Морфофункциональная характеристика. Межклеточное вещество

Сопровождает кровеносные и лимфатические сосуды, образует строму многих органов, состоит из клеток и межклеточного вещества (рис. 1).

Энд – эндотелий

Рис. 1. Рыхлая волокнистая соединительная ткань.

ЖК – жировая клетка; КлВ – коллагеновое волокно; Мф – макрофаг; РВ – ретикулярное волокно; П – перицит; ПК – плазматическая клетка; ТК – тучная клетка; Фб – фибробласт; ЭлВ – эластическое волокно; Энд - эндотелиоцит

Клетки соединительной ткани

Среди многочисленных клеток соединительной ткани встречаются фибробласты, макрофаги, плазмоциты, тучные клетки, адипоциты, пигментоциты, адвентициальные клетки, перициты, а также мигрировавшие сюда из крови лейкоциты (лимфоциты, нейтрофилы).

Фибробласты – преобладающая популяция клеток, неоднородная по степени зрелости и функциональной специфичности. Эти клетки синтезируют компоненты межклеточного вещества: белки (коллаген, эластин), протеогликаны, гликопротеины. Фибробластический дифферон включает в себя стволовые клетки (мультипотентные мезенхимные стволовые клетки), полустволовые клетки-предшественники (префибробласты), малоспециализированные (юные фибробласты), дифференцированные фибробласты (зрелые, активно функционирующие), фиброциты (дефинитивные формы клеток), а также фиброкласты и миофибробласты (рис. 2). Морфологически можно дифференцировать клетки фибробластического ряда, начиная с префибробластов.

Малодифференцированные фибробласты (юные, камбиальные) представляют собой округлые или веретеновидные активно пролиферирующие клетки, имеющие при световой микроскопии четкие контуры, резко базофильную цитоплазму. Гранулярная эндоплазматическая сеть в них развита слабо, определяется большое количество свободных рибосом и мелких митохондрий, что свидетельствует о синтезе белка для нужд самой клетки. Наибольшее количество этих клеток выявляется при физиологической и патологической регенерации соединительной ткани, восполняя популяцию погибших фибробластов.

Дифференцированные фибробласты (зрелые) являются центральным звеном фибробластического дифферона. Это зрелые, активно пролиферирующие клетки, которые характеризуются полиморфностью, крупным ядром и различным количеством отростков, сохраняющихся даже при миграции в тканях. Комплекс органелл типичен для клеток с высокой функциональной активностью, секретирующих экспортные белки. Значительный объем занимает разветвленная гранулярная эндоплазматическая сеть, комплекс Гольджи, на долю которого приходится около 10 % цитоплазмы и который рассредоточен по всему ее объему, даже по периферии, что связано с секрецией различных продуктов всей поверхностью клетки. Выявляются крупные округлые и разветвленные митохондрии со светлым матриксом и укороченными кристами.



В рыхлой волокнистой соединительной ткани фибробласты располагаются свободно в основном веществе, не образуя межклеточных контактов друг с другом. Зрелые фибробласты отвечают за синтез компонентов внеклеточного матрикса – кислых мукополисахаридов, коллагена I и III типов, а также продуцируют ряд цитокинов (макрофагальный колониестимулирущий фактор; фактор роста фибробластов-10, эпидермальный фактор роста; интерлейкин-6), которые путем паракринного взаимодействия регулируют пролиферацию, миграцию, дифференцировку и функциональную активность клеток различных дифферонов.


Рис. 2. Схема фибробластического дифферона

Фиброциты являются дефинитивными (конечными) формами развития фибробластов. Это высокоспециализированные, но синтетически неактивные клетки веретеновидной формы, с крыловидными отростками, наличием крупного вытянутого ядра и незначительного объема цитоплазмы. В цитоплазме содержат небольшое количество органелл, наиболее многочисленными из которых являются лизосомы и аутофагосомы; определяются также липидные капли и липопигментные включения.

Миофибробласты – это специализированные фибробластоподобные клетки, обладающие выраженным сократительным аппаратом, представленным комплексом a-гладкомышечного актина и миозина. В наибольшем количестве их обнаруживают в составе «грануляционной ткани», где они обеспечивают контракцию (стягивание) формирующегося соединительнотканного рубца. Эти клетки способны продуцировать коллаген, особенно III типа, имеют десмосомоподобные и щелевидные межклеточные контакты, объединяющие миофибробласты для сочетанных сокращений.



Фиброкласты – характеризуются высокой фагоцитарной и гидролитической активностью, участвуют в расщеплении и утилизации межклеточного вещества в участках перестройки и инволюции соединительной ткани органов. Для фиброкластов характерно содержание в цитоплазме большого количества лизосом, ферменты которых выделяются в межклеточную среду, расщепляя ее.

Макрофаги – это клетки, выполняющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц. Кроме того, макрофаги синтезируют и выделяют в межклеточную среду около 100 различных биологически активных веществ. Макрофаги образуются из моноцитов после выхода последних из кровеносного русла. Форма макрофагов характеризуется структурной и функциональной гетерогенностью. По локализации макрофаги бывают фиксированные и свободные (подвижные). По функциональному состоянию они бывают резидуальными (неактивными) и активированными . Наиболее характерная структурная особенность макрофагов – выраженный лизосомальный аппарат. Защитные функции макрофагов реализуются в:

· неспецифической защите – посредством фагоцитоза;

· выделении во внеклеточную среду лизосомальных ферментов;

  • специфической (иммунологическая) защите – антигенпредставляющая функция, выработка монокинов и др.

Плазматические клетки являются эффекторными клетками гуморального иммунитета. Они образуются из В-лимфоцитов при воздействии на них антигенов. Эти клетки имеют округлую форму. базофильную цитоплазму, эксцентрично расположенное ядро. К ядру прилежит бледно окрашенный участок цитоплазмы – «светлый дворик», в котором локализуется аппарат Гольджи. Функции плазмоцитов – синтез и выделение иммуглобулинов.

Тканевые базофилы (тучные клетки, лаброциты) – истинные клетки рыхлой волокнистой соединительной ткани. В их цитоплазме находится специфическая зернистость, напоминающая гранулы базофилов. Различают два типа гранул: метахроматические , окрашивающиеся основными красителями с изменением цвета окраски, и ортохроматические , окрашивающиеся основными красителями без изменения цвета и представляющие собой лизосомы. Тучные клетки регулируют местный тканевой гомеостаз посредством выработки веществ, способных изменять проницаемость гемокапилляров и степень гидратации межклеточного вещества (гистамин, гепарин, серотонин), а также принимают участие в иммунных реакциях (синтез иммуноглобулина Е). Выделение гранул из цитоплазмы тучных клеток в межклеточное вещество называется дегрануляцией .

Жировые клетки (адипоциты)– это клетки, способные в больших количествах накапливать резервный жир. Адипоциты располагаются группами, реже поодиночке, и имеют характерную морфологию – почти вся цитоплазма заполнена одной жировой каплей, а органеллы и ядро отодвигаются на периферию (форма «перстня с печаткой»).

Пигментные клетки (пигментоциты, меланоциты) – клетки отростчатой формы, содержащие в цитоплазме пигментные включения (гранулы меланина). Их много в родимых пятнах, а также в соединительной ткани людей черной и желтой расы. Они выполняют защитную функцию – защиту организма от избыточного ультрафиолетового излучения и антиоксидантную защиту.

Адвентициальные клетки – локализуются в адвентиции сосудов, сопровождая сосуды микроциркуляторного русла. Имеют уплощенную или веретеновидную форму, вытянутое ядро, слабо базофильную цитоплазму с небольшим количеством органелл; в процессе дифференцировки могут превращаться в фибробласты, макрофаги, гладкие миоциты, тканевые базофилы.

Перициты – клетки отростчатой формы, локализуются в дубликатуре базальной мембраны капилляра, прилегая к эндотелию лишь с одной стороны и охватывая его в виде корзинки. У перицитов базофильная цитоплазма, в которой содержатся гранулы гликогена, везикулы, хорошо выраженный цитоскелет, нити актина и миозина. Перициты контролируют пролиферацию эндотелия, синтезируют компоненты базальной мембраны, а также способны дифференцируется в гладкие миоциты и фибробласты, осуществляя таким образом репаративную функцию. Кроме того, за счет сократительных движений, перициты способны регулировать просвет капилляров, проницаемость стенки капилляра и транспорт макромолекул в ткань.

Соединительная ткань – самая распространённая в организме, на нее приходится больше половины массы человека. Сама по себе не отвечает за работу систем организма, но оказывает вспомогательное действие во всех органах.

Особенности строения соединительной ткани

Выделяют три основных вида соединительной ткани, которые имеют различное строение и осуществляют определенные функции: собственно соединительная ткань, хрящевая и костная.

Разновидности соединительной ткани
Тип Характеристика
Плотная волокнистая - Оформленная, где хондриновые волокна идут параллельно;
- неформенная, где волокнистые структуры формируют сетку.
Рыхлая волокнистая Относительно клеток, межклеточного вещества больше, включает коллагеновые, эластические и ретикулярные волокна.
Ткани со специальными свойствами - Ретикулярная - формирует основу кроветворных органов, окружая созревающие клетки;
жировая – находится в брюшной области, на бедрах, ягодицах, запасая энергетические ресурсы;
- пигментная - есть в радужной оболочке глаза, коже сосков молочных желез;
- слизистая – одна из составляющих пупочного канатика.
Костная соединительная Состоит из остеобластов, они расположены внутри лакун, между которыми лежат кровеносные сосуды. Межклеточное пространство заполнено минеральными соединениями и хондриновыми волокнами.
Хрящевая соединительная Прочная, построена из хондробластов и хондроитина. Окружена надхрящницей, где идет формирование новых клеток. Выделяют гиалиновые хрящи, эластические и волокнистые.

Типы клеток соединительной ткани

Фибробласты – клетки, которые продуцируют промежуточное вещество. Они занимаются синтезом волокнистых образований и остальных составляющих соединительной ткани. Благодаря им идёт заживление ран и формирование рубцов, капсулирование инородных тел. Еще недифференцированные фибробласты овальной формы с большим количеством рибосом. Другие органоиды развиты слабо. Зрелые фибробласты имеют большие размеры и отростки.

Фиброциты — это окончательная форма развития фибробластов. Они имеют крыло-образное строение, цитоплазма включает ограниченное количество органоидов, процессы синтеза снижены.

Миофибробласты во время дифференцировки переходят в фибробласты. Они схожи с миоцитами, но в отличие от последних, обладают развитой ЭПС. Эти клетки часто встречаются в грануляционной ткани во время заживления порезов.

Макрофаги — размер тела варьирует от 10 до 20 микрометров, форма овальная. Среди органелл наибольшее количество лизосом. Плазмолема образует длинные отростки, благодаря им она захватывает инородные тела. Макрофаги служат для формирования врожденного и приобретенного иммунитета. Плазмоциты имеют овальное тело, иногда многоугольное. Эндоплазматическая сетка развита, отвечает за синтез антител.

Тканевые базофилы, или тучные клетки , располагаются в стенке пищеварительного тракта, матки, молочных железах, миндалинах. Форма тела разная, размеры от 20 до 35, иногда достигают 100мкм. Они окружены плотной оболочкой, внутри содержатся специфические вещества, которые имеют большое значение – гепарин и гистамин. Гепарин предотвращает сворачивание крови, гистамин воздействует на оболочку капилляров и увеличивает ее проницаемость, это ведет к просачиванию плазмы сквозь стенки кровеносного русла. Как следствие под эпидермисом формируются пузыри. Такое явление часто наблюдается при анафилаксии или аллергии.

Адипоциты — клетки, которые запасают липиды, необходимые для питания и энергетических процессов. Жировая клетка полностью наполнена жиром, который растягивает цитоплазму в тонкий шар, а ядро приобретает сплющенную форму.

Меланоциты содержат пигмент меланин, но сами они его не продуцирует, а только захватывают уже синтезированный эпителиоцитами.

Адвентициальные клетки недифференцированные, в дальнейшем могут трансформироваться в фибробласты или адипоциты. Встречаются возле капилляров, артерий, в виде плоскотелых клеток.

Вид клеток и ядра соединительной ткани отличается у ее подвидов. Так адипоцит при поперечном разрезе похож на кольцо с печаткой, где ядро выступают в роли печатки, а перстень — это тонкая цитоплазма. Ядро плазмоцита небольших размеров, расположено на периферии клетки, а хроматин внутри образует характерный рисунок — колесо со спицами.

Где находится соединительная ткань

Соединительная ткань имеет разнообразное расположение в организме. Так, коллагеновые волокнистые структуры формируют сухожилия, апоневрозы и фасциальные футляры.

Неоформленная соединительная ткань одна из компонентов dura mate (твердая оболочка мозга), сумки суставов, клапанов сердца. Эластические волокна, составляющие адвентицию сосудов.

Бурая жировая ткань наиболее развита у месячных детей, обеспечивает эффективную теплорегуляцию. Хрящевая ткань формирует носовые хрящи, гортанные, наружный слуховой ход. Костные ткани формируют внутренний скелет. Кровь – жидкая форма соединительной ткани, циркулирует по замкнутой кровеносной системе.

Функции соединительной ткани:

  • Опорная — формирует внутренний скелет человека, а также строму органов;
  • питательная — доставляет с током крови О 2 , липиды, аминокислоты, глюкозу;
  • защитная – отвечает за иммунные реакции путем образования антител;
  • восстановительная — обеспечивает заживление ран.

Отличие соединительной ткани от эпителиальной

  1. Эпителий покрывает мышечные ткани, основной составляющий слизистых оболочек, формирует наружный покров и обеспечивает защитную функцию. Соединительная ткань образует паренхиму органов, обеспечивает опорную функцию, отвечает за транспорт питательных веществ, играет большую роль в метаболических процессах.
  2. Неклеточные структуры соединительной ткани более развиты.
  3. Внешний вид эпителия сходный с ячейками, а клетки соединительной ткани имеют продолговатую форму.
  4. Разное происхождение тканей: эпителий походит из эктодермы и эндодермы, а соединительная ткань – из мезодермы.

В организме рыхлая волокнистая неоформленная соединительная ткань самая распространенная. Она располагается около эпителиальных тканей; в большем или меньшем количестве сопровождает кровеносные, лимфатические сосуды; входит в состав кожи и слизистых оболочек; в виде прослоек с сосудами ее обнаруживают во всех тканях и органах.

Рыхлая волокнистая неоформленная соединительная ткань (рис. 31) состоит из разнообразных клеток и межклеточного вещества, содержащего основное (аморфное) вещество и систему коллагеновых и эластических волокон, расположенных неупорядоченно, поэтому ткань - неоформленная (см. цв. вкл., рис. II).

Рис. 31.

I - макрофаг (гистиоцит); 2 - аморфное межклеточное вещество; 3 - плазмоиит; 4 - жировые клетки; 5 - клетки крови в кровеносном сосуде; 6 - гладкомышечная клетка; 7- адвентициальная клетка; 8 - эндотелиальная клетка; 9 - фибробласт; 10 - тучные клетки (лабро- циты); 11 - эластические волокна; 12 - коллагеновые волокна

Распространенность, разнообразие и большое количество клеточных элементов и межклеточного вещества рыхлой волокнистой неоформленной соединительной ткани обеспечивают следующие функции:

трофическую - обменные процессы, регуляция питания клеток;

защитную - участие в иммунных реакциях;

пластическую - восстановительные процессы при тканевом повреждении;

опорную - образование стромы органов, связывание тканей органов между собой.

Клетки рыхлой волокнистой неоформленной соединительной ткани в совокупности представляют единый диффузно рассредоточенный аппарат, находящийся в неразрывной связи с клетками крови и лимфоидной системой организма.

В рыхлой волокнистой неоформленной соединительной ткани имеются разнообразные высокоспециализированные клетки: адвентициальные, фибробласты, макрофаги, тучные, плазматические, жировые, пигментные.

Адвентициальные клетки (от лат. adventicus - пришлый, блуждающий) наименее дифференцированные, во многом напоминают клетки мезенхимы, имеют вытянутую звездчатую форму, часто с длинными отростками. Эти клетки располагаются вдоль наружной поверхности капилляров. Так как адвентициальные клетки - камбиальные, они активно делятся митозом и дифференцируются в фибробласты, миофибробласты и липоциты.

Фибробласты (от лат. fibrin - белок, blastos - росток) - продуценты белка, являются постоянными и наиболее многочисленными клетками. В ходе зародышевого развития фибробласты образуются непосредственно из клеток мезенхимы, в постэмбриональный период. Фибробласты формируются из адвентициальных клеток при регенерации.

Фибробласты имеют веретенообразную форму, крупное ядро, которое слабо окрашивается, отчетливо видны 1...2 ядрышка. Цитоплазма периферии клетки очень светлая, поэтому контуры клеток неотчетливые и сливаются с основным веществом. Вокруг ядра цитоплазма, напротив, окрашивается интенсивно, за счет большого количества гранулярной эндоплазматической сети.

Фибробласты - это подвижные клетки. В их цитоплазме располагаются микрофиламенты, содержащие актин. Они сокращаются, и происходит движение. Двигательная активность фибробластов усиливается при образовании капсулы из соединительной ткани при ранениях.

У взрослых животных фибробласты имеют незначительное количество цитоплазмы, такие высокодифференцированные клетки называют фиброцитами.

Макрофаги (гистиоциты)- клетки, обладающие способностью к фагоцитозу и накоплению взвешенных коллоидных веществ в цитоплазме. Макрофаги участвуют в общих и местных защитных реакциях иммунитета (от лат. immunitas - освобождение от чего-либо).

В условиях культивирования макрофаги прочно прикрепляются к поверхности стекла и приобретают уплощенную форму.

Ядро макрофагов имеет четко очерченные контуры, содержит глыбки хроматина, хорошо окрашивающегося основными красителями. Цитоплазма содержит много вакуолей, что свидетельствует об активном участии в обмене веществ. Контуры цитоплазмы четкие, отростки в виде псевдоподий, поэтому клетка похожа на амебу.

Основоположником учения о макрофагах является И. И. Мечников, объединивший эти клетки в единую систему - макрофагальную. Позднее патолог Ашофф предложил называть ее ретику- лоэндотелиальной системой.

Подвижные, активно фагоцитирующие свободные макрофаги образуются из различных источников: адвентициальных клеток, моноцитов, лимфоцитов и стволовых кроветворных клеток. Моноциты циркулирующей крови представляют подвижную популяцию относительно незрелых макрофагов на пути от костного мозга в органы и ткани.

По классификации Всемирной организации здравоохранения (1972) макрофаги объединены в Систему мононуклеарных фагоцитов - СМФ.

Макрофаги участвуют во многих иммунных реакциях: в распознавании, переработке и представлении антигена лимфоцитам, в межклеточном взаимодействии с лимфоцитами. Обладая способностью к направленному движению - хемотаксису, макрофаги мигрируют в очаг воспаления, где становятся доминирующими клетками при хроническом воспалении. При этом не только очищают очаг от инородных частиц и разрушенных клеток, но и стимулируют в последующем функциональную активность фибробластов.

При воспалении макрофаги приходят в состояние раздражения, увеличиваются в размерах, передвигаются и превращаются в структуры, называемые полибластами.

При электронной микроскопии на поверхности макрофагов видны длинные пластинчатые отростки, с помощью которых при фагоцитозе они захватывают инородные частицы. Отростки, подобно псевдоподиям амебы, окружают инородную частицу и сливаются на верхушке клетки. Захваченная частица оказывается внутри цитоплазмы, окружается лизосомами и постепенно переваривается.

В зависимости от локализации (печень, легкие, брюшная полость и др.) макрофаги приобретают некоторые специфические особенности строения и свойства. Однако всем макрофагам свойственны некоторые общие ультраструктурные и цитохимические признаки. Благодаря наличию сократимых нитей - филаментов, обеспечивающих подвижность плазмолеммы, клетки этой системы способны к образованию различных приспособлений, облегчающих захват частиц. Один из основных ультраструктурных признаков макрофагов - наличие в цитоплазме многочисленных ли- зосом, которые расщепляют и перерабатывают захваченный материал.

Макрофаги участвуют не только в фагоцитозе, но и представляют антиген для запуска цепи иммунных реакций, приводящих к формированию иммунитета. Основные функции, посредством которых макрофаги участвуют в реакциях иммунитета, можно разделить на четыре типа: хемотаксис; фагоцитоз; секреция биологически активных соединений; переработка антигена (процессинг) и представление антигена иммунокомпетентным клеткам, формирующим иммунный ответ.

При наличии в очаге токсичных и устойчивых раздражителей (некоторые микроорганизмы, химические вещества, малорастворимые вещества) с участием макрофагов формируется гранулема, в которой путем слияния клеток могут образовываться гигантские многоядерные клетки.

При проникновении чужеродных частиц множество макрофагов плотно примыкают друг к другу, соединяются отростками, образуют интердигитации (от лат. inter - между, digitatio - пальцевидные образования). Это хорошо заметно в культуре тканей: образованию гигантских многоядерных клеток предшествует формирование интердигитаций. Иногда гигантская многоядерная клетка образуется при многократном делении амитозом ядра одного макрофага.

Тучные клетки (тканевые базофилы, лаброци- т ы) обнаружены у всех млекопитающих, однако количество у животных разных видов и в соединительной ткани различных органов неодинаковое. У некоторых животных, например у морских свинок, тканевых базофилов много, но мало базофилов крови: обратно пропорциональная зависимость между указанными клетками свидетельствует о сходном биологическом значении.

Значительное количество тканевых базофилов содержится в рыхлой соединительной ткани рядом с эпидермисом, эпителием пищеварительного тракта, дыхательных путей, матки. Часто тучные клетки обнаруживают в рыхлой соединительной ткани между дольками печени, в почках, эндокринных органах, молочной железе и в других органах.

По форме тканевые базофилы чаще овальные или шаровидные, размером от 10 до 25 мкм. Ядро расположено центрально, всегда содержит много глыбок конденсированного хроматина. Электронно-микроскопическими исследованиями в цитоплазме обнаруживают митохондрии, рибосомы; эндоплазматическая сеть и комплекс Гольджи развиты слабо.

Наиболее характерная структурная особенность тканевых базо- филов - наличие многочисленных крупных (0,3... 1 мкм) гранул, равномерно заполняющих ббльшую часть объема цитоплазмы. Гранулы окружены мембраной и имеют неодинаковую электронную плотность.

Располагаясь вблизи мелких кровеносных сосудов, тканевые базофилы одни из первых реагируют на проникновение антигенов. Характерное метахроматическое окрашивание гранул тканевых базофилов обусловлено наличием гепарина и гистамина. Дегрануляция тканевых базофилов, вызванная различными факторами, приводит к выделению гепарина - вещества, препятствующего свертыванию крови. Напротив, без разрушения целостности гранул происходит секреция гистамина, повышающего проницаемость капилляров, стимулирующего миграцию эозинофилов, активизацию макрофагов.

Кроме того, в гранулах тканевых базофилов содержатся важнейшие биологические амины - серотонин, дофамин, имеющие многообразное фармакологическое действие. Тканевые базофилы участвуют в развитии аллергических и анафилактических реакций.

На цитоплазматической мембране тканевых базофилов, так же как и у базофилов крови, находится значительное количество иммуноглобулинов класса Е (IgE). Связывание антигенов и образование комплекса антиген-антитело сопровождается дегрануляцией и выделением из тканевых базофилов сосудисто-активных веществ, обусловливающих появление местных и общих реакций.

Плазматические клетки (плазмоциты) синтезируют и выделяют основную массу иммуноглобулинов - антител - белки, образующиеся в ответ на внедрение антигена.

Плазматические клетки обычно встречаются в собственном слое слизистой оболочки кишечника, сальника, в соединительной ткани между дольками слюнных, молочных желез, в лимфатических узлах, костном мозге.

Клетки могут быть округлой или овальной формы; на внутренней стороне четко очерченной ядерной оболочки радиально располагаются глыбки хроматина. Цитоплазма из-за наличия большого количества РНК резко базофильная, исключение составляет лишь небольшой ободок цитоплазмы около ядра - перинуклеар- ная зона. По периферии цитоплазмы имеются многочисленные мелкие вакуоли.

По происхождению плазматические клетки представляют собой конечные стадии развития В-лимфоцитов, которые в участках своего расположения активизируются, интенсивно размножаются и преобразуются в плазмоциты.

Образование плазмоцита из активизированного В-лимфоцита при участии Т-хелперов и макрофагов проходит следующие этапы: В-лимфоцит -» плазмобласт -> проплазмоцит -> плазмоцит. Преобразование указанных клеточных форм происходит в течение 24 ч.

Плазмобласт - крупная клетка с крупным ядром, активно делящаяся митозом. Проплазмоцит гораздо меньше, характеризуется резко выраженной базофилией цитоплазмы, в которой появляется много расширенных цистерн гранулярной эндоплазматической сети.

Плазмоцит (зрелый плазмоцит) содержит небольшое, эксцентрично расположенное ядро, в котором глыбки хроматина распределены как спицы колеса. Белоксинтезирующий механизм запрограммирован на синтез антител определенной разновидности. Каждая плазматическая клетка определенного клона способна за 1 ч синтезировать несколько тысяч молекул иммуноглобулинов.

На заключительной стадии развития плазмоциты содержат мощный белоксинтезирующий аппарат, с помощью которого синтезируют иммуноглобулины - антитела. Синтезированные молекулы поступают в просвет цистерн, затем в комплекс Гольджи, оттуда после присоединения углеводного компонента выделяются из клетки. Антитела выделяются при разрушении клетки.

В цитоплазме плазматических клеток образуются ацидофильные включения в виде гомогенных структур, интенсивно окрашивающихся эозином в розовый цвет. При этом базофилия цитоплазмы исчезает, ядро фрагментируется; постепенно округляясь, из ацидофильных структур образуется ацидофильное тельце Русселя, расположенное в основном веществе рыхлой волокнистой неоформленной соединительной ткани. Тельце Русселя состоит из глобулинов и комплекса глобулинов с углеводами.

Жировые клетки (липоциты) располагаются главным образом вблизи кровеносных сосудов, а также могут формировать отложения жировой ткани (textus adiposus). В эмбриогенезе жировые клетки формируются из клеток мезенхимы. Предшественниками для образования новых жировых клеток в постэмбриональный период являются адвентициальные клетки, сопровождающие кровеносные капилляры.

Жировые клетки синтезируют и накапливают в цитоплазме запасные липиды, главным образом триглицериды.

Из жировых клеток образованы дольки различных размеров. Между дольками находятся прослойки рыхлой соединительной ткани, в которых проходят мелкие кровеносные сосуды и нервные волокна. Между жировыми "клетками внутри долек располагаются отдельные клетки соединительной ткани (фиброциты, тканевые базофилы), сеть тонких аргирофильных волокон и кровеносные капилляры.

Жировые вещества выявляют при использовании специальных красителей (судан III, Судан IV, четырехокись осмия). Липоциты имеют перстневидную форму, большая часть объема клетки занята одной крупной каплей жира, овальное ядро и цитоплазма находятся на периферии клетки (см. цв. вкп., рис. III).

Во многих частях организма животных образуются значительные скопления жировых клеток, называемые жировой тканью. В связи с особенностями естественной окраски, строения и функции, а также расположения различают у млекопитающих две разновидности жировых клеток и соответственно два типа жировой ткани: белую и бурую.

Белая жировая ткань в организме животных разных видов и пород распределена неодинаково. В значительном количестве она содержится в так называемых жировых депо: подкожная жировая клетчатка, особенно развитая у свиней, жировая ткань вокруг почек в брыжейке (околопочечная клетчатка), у некоторых пород овец у корня хвоста (курдюк). У крупного рогатого скота мясных и мясомолочных пород группы жировых клеток располагаются в прослойках рыхлой волокнистой неоформленной соединительной ткани скелетных мышц. Мясо, полученное от таких животных, обладает наилучшими вкусовыми качествами и называется «мраморным».

Структурная единица белой жировой ткани - шаровидные жировые клетки до 120 мкм в диаметре. При развитии клеток жировые включения в цитоплазме появляются сначала в виде мелких рассеянных капель, позднее сливающихся в одну крупную каплю.

Общее количество белой жировой ткани в организме животных различных видов, пород, пола, возраста, упитанности колеблется от 1 до 30 % живой массы тела. Запасные жиры - наиболее высококалорийные вещества, при их окислении в организме освобождается большое количество энергии (1 г жира = 39 кДж).

Подкожная жировая клетчатка имеет большое значение для защиты организма от механических повреждений, предохраняет от потерь тепла. Жировая ткань вдоль нервно-сосудистых пучков обеспечивает относительную изоляцию, защиту и ограничение подвижности. Скопления жировых клеток в сочетании с пучками коллагеновых волокон в коже подошв и лап создают амортизацию при движении. Жировая ткань служит депо воды. Образование воды - важная особенность обмена жиров у животных, обитающих в засушливых районах (верблюды).

При голодании организм использует прежде всего запасные жиры из клеток жировых депо, в которых уменьшаются и исчезают жировые включения. Жировая ткань глазной орбиты, эпикарда, лап сохраняется даже при сильном истощении.

Цвет жировой ткани зависит от вида, породы и типа кормления животных. У большинства животных, за исключением свиней и коз, в жире содержится пигмент каротин, придающий желтый цвет жировой ткани. У крупного рогатого скота жировая ткань перикарда содержит много коллагеновых волокон. Почечным жиром называют жировую ткань, окружающую мочеточники.

В области спины жировая ткань свиней содержит мышечную ткань, а также нередко волосяные луковицы (щетину) и волосяные сумки. В области брюшины имеется скопление жировой ткани - так называемый брыжеечный, или мезентериальный, жир, где содержится очень большое количество лимфатических узлов, ускоряющих окислительные процессы и порчу жира. В брыжеечном жире часто встречаются кровеносные сосуды, например у свиней больше артерий, а у крупного рогатого скота - больше вен.

Внутреннее сало представляет собой жировую ткань, расположенную под брюшиной. Оно содержит большое количество волокон, располагающихся в косом и перпендикулярном направлениях. Иногда в жировой ткани свиней обнаруживают пигментные зерна, в таких случаях выявляются коричневые или черные пятна.

Бурая жировая ткань в значительном количестве имеется у грызунов и животных, впадающих в зимнюю спячку, а также у новорожденных животных других видов. Эта ткань расположена преимущественно под кожей между лопатками, в шейной области, в средостении и вдоль аорты. Бурая жировая ткань состоит из относительно мелких клеток, очень плотно прилегающих друг к другу, напоминая внешне железистую ткань. К клеткам подходят многочисленные нервные волокна, оплетенные густой сетью кровеносных капилляров.

Для клеток бурой жировой ткани характерны центрально расположенные ядра и наличие в цитоплазме мелких жировых капель, которые не сливаются в крупную каплю. В цитоплазме между жировыми каплями расположены гранулы гликогена и многочисленные митохондрии, окрашенные белки системы транспортных электронов -? цитохромы, придающие бурый цвет этой ткани.

В клетках бурой жировой ткани интенсивно происходят окислительные процессы с выделением значительного количества энергии. Однако большая часть образующейся энергии расходуется не на синтез молекул АТФ, а на теплообразование. Такое свойство липоцитов бурой ткани является важным для регуляции температуры у новорожденных животных и для согревания животных после пробуждения от зимней спячки.

Пигментные клетки (пигментоциты), как правило, имеют отростки, в цитоплазме очень много темно-коричневых или черных зерен пигмента из группы меланинов. В соединительной ткани кожи низших позвоночных: рептилий, амфибий, рыб, содержится значительное количество пигментных клеток -хро- матофоров, обусловливающих ту или иную окраску внешнего покрова и выполняющих защитную функцию. У млекопитающих пигментные клетки сосредоточены преимущественно в тканях глазного яблока - склере, сосудистой и радужной оболочках, а также в ресничном теле.

Представлено двумя компонентами: основным (аморфным) веществом - бесструктурным матриксом, имеющим студневидную консистенцию; коллагеновыми и эластическими волокнами, расположенными относительно рыхло и беспорядочно.

В состав основного вещества входят высокомолекулярные кислые мукополисахариды: гиалуроновая кислота, хондро- итинсерная кислота, гепарин. Эти химические компоненты выделяются как из клеток, так и из плазмы крови. Количество этих веществ в различных участках соединительной ткани неодинаковое. Около капилляров и мелких сосудов, в участках, содержащих жировые прослойки, или в ткани, богатой ретикулярными клетками, основного вещества мало, а на границах с эпителием, напротив, много. В этих участках основное вещество вместе с ретикулярными волокнами образует пограничные базальные мембраны, часто хорошо различимые.

Состояние основного вещества может изменяться, в зависимости от этого меняется и вид базальной мембраны. Если основное вещество жидкое, то пограничный слой имеет волокнистую структуру; если плотное, то контуры волокон не выступают и мембрана выглядит гомогенной.

Основное вещество заполняет промежутки между клетками, волокнами, сосудами микроциркуляторного русла. Бесструктурное основное вещество на ранних стадиях развития ткани в количественном отношении преобладает над волокнами.

Основное вещество - гелеобразная масса, способная в широких пределах менять свою консистенцию, что существенно отражается на его функциональных свойствах. По химическому составу это очень лабильный комплекс, состоящий из гликозаминогли- канов, протеогликанов, гликопротеидов, воды и неорганических солей. Важнейшим химическим высокополимерным веществом в этом комплексе является несульфатированная разновидность гли- козаминогликанов - гиалуроновая кислота. Неразветвленные цепи молекул гиалуроновой кислоты, образуют многочисленные изгибы и формируют своеобразную молекулярную сеть, в ячеях и каналах которой находится и циркулирует тканевая жидкость. Благодаря наличию таких молекулярных пространств в основном веществе имеются условия для передвижения различных веществ от кровеносных капилляров и продуктов клеточного метаболизма в обратном направлении - к кровеносным и лимфатическим капиллярам для последующего выделения из организма.

Коллагеновые волокна имеют вид лентовидных тяжей, ориентированных в различных направлениях. Волокна не ветвятся, они малорастяжимы, имеют большую прочность на разрыв (выдерживают до 6 кг на 1 мм 2 поперечного сечения), способны объединяться в пучки. При длительной варке коллагеновые волокна образуют клей (от англ, kolla - клей).

Прочность коллагеновых волокон обусловлена тонкой структурной организацией. Каждое волокно состоит из фибрилл диаметром до 100 нм, расположенных параллельно друг другу и погруженных в межфибриллярное вещество, содержащее протеины, гликозаминогликаны и протеогликаны. Коллагеновые волокна неодинаковы по степени своей зрелости. В составе недавно образованных при воспалительной реакции волокон имеется значительное количество цементирующего полисахаридного вещества, которое способно восстанавливать серебро при обработке срезов солями серебра. Поэтому молодые коллагеновые волокна часто называют аргирофильными, в зрелых волокнах количество этого вещества уменьшается.

При электронной микроскопии по длине фибриллы наблюдают характерную поперечную исчерченность - чередование темных и светлых полос с определенным периодом повторяемости, а именно один темный и один светлый сегмент вместе составляют один период длиной 64...70 нм. Наиболее отчетливо эта исчерченность видна на негативно окрашенных препаратах коллагеновых фибрилл. На позитивно окрашенных препаратах коллагеновых фибрилл, кроме основной темно-светлой периодичности, выявляют сложный рисунок более тонких электронно-плотных полосок, разделенных узкими промежутками шириной 3...4 нм.

Фибрилла состоит из более тонких протофибрилл из белка тро- поколлагена. Протофибриллы имеют длину 280...300 нм и ширину 1,5 нм. Образование фибриллы - результат характерной группировки мономеров в продольном и поперечном направлениях.

Молекула тропоколлагена имеет асимметричную структуру, где сходные последовательности аминокислот оказываются друг напротив друга, возникают узкие вторичные темноокрашенные полосы. Каждая молекула тропоколлагена представляет собой спираль из трех полипептидных цепей, удерживаемых водородными связями. Уникальная структура тропоколлагена обусловлена высоким содержанием глицина, оксилизина и оксипролина.

Эластические волокна имеют разную толщину (от 0,2 мкм в составе рыхлой соединительной ткани до 15 мкм в связках). На окрашенных гематоксилином и эозином пленочных препаратах соединительной ткани волокна имеют вид выраженных тонких ветвящихся гомогенных нитей, формирующих сеть. Для избирательного выявления эластических сетей используют специальные красители: орсеин, резорцин-фуксин. В отличие от коллагеновых эластические волокна не объединяются в пучки, обладают малой прочностью, высокой устойчивостью к воздействию кислот и щелочей, нагреванию, к гидролизующему действию ферментов (за исключением эластазы).

При электронной микроскопии в строении эластического волокна различают более прозрачную аморфную центральную часть, состоящую из белка эластина, и периферическую, в которой содержится большое количество электронно-плотных микрофибрилл гликопротеидной природы, имеющих форму трубочек диаметром около 10 нм.

Образование эластических волокон в соединительной ткани обусловлено синтетической и секреторной функциями фибробластов. Считается, что вначале в непосредственной близости от фибробластов образуется каркас из микрофибрилл, а затем усиливается образование аморфной части из предшественника эластина - проэластина. Под влиянием ферментов молекулы проэластина укорачиваются и превращаются в небольшие, почти сферические молекулы тропоэластина. При образовании эластина молекулы тропоэластина соединяются между собой с помощью десмозина и изодесмозина, отсутствующих в других белках. Кроме того, в эластине нет оксилизина и полярных боковых цепей, что обусловливает высокую устойчивость эластических волокон.

Этот вид соединительной ткани обнаруживается во всех органах, так как она сопровождает кровеносные и лимфати­ческие сосуды и образует строму многих органов.

Морфофункциональная характеристика клеточных элементов и межклеточного вещества.

Строение . Она состоит из клеток и межклеточного ве­щества (рис. 6-1).

Различают следующие клетки рыхлой волокнистой со­единительной ткани :

1. Фибробласты – наиболее многочисленная группа клеток, различных по степени дифференцировки, характе­ри­зующаяся прежде всего способностью синтезировать фиб­риллярные белки (коллаген, эластин) и гликозаминогликаны с последующим выделением их в межклеточное вещество. В процессе дифференцировки образуется ряд клеток:

    стволовые клетки;

    полустволовые клетки-предшественни­ки;

    малоспециализированные фибробласты – малоотростча­тые клетки с округлым или овальным ядром и небольшим ядрышком, базофильной цитоплазмой, богатой РНК.

Функция: обладают очень низ­ким уровнем синтеза и сек­реции белка.

    дифференцированные фибробласты (зрелые) — крупные по разме­ру клетки (40-50мкм и более). Их ядра светлые, содер­жат 1-2 крупных ядрышка. Границы клеток нечеткие, размытые. Цитоплазма содержит хорошо развитую грану­лярную эндоплазматическую сеть.

Функция: Интенсивный биосинтез РНК, коллагеновых и эластических белков, а также гликозминогликанов и проте­огликанов, необходимых для формирова­ния основного веще­ства и волокон.

    фиброциты — дефинитивные формы развития фибробла­стов. Они имеют веретеновидную форму и крыловидные от­ростки. Содер­жат небольшое число органелл, вакуолей, ли­пидов и гликогена.

Функция: cинтез коллагена и других веществ у этих клеток резко снижен.

— миофибробласты — функционально сходные с гладкими мышечными клет­ками, но в отличие от последних имеющие хорошо развитую эндоплазматическую сеть.

Функция: эти клетки наблюдаются в грануляционной ткани раневого про­цесса и в матке, при развитии беременно­сти.

— фиброкласты.- клетки с высокой фагоцитарной и гидро­ли­тической активностью, в них содержится большое количе­ство лизосом.

Функция: принимают участие в рассасывании меж­кле­точного вещества.

Рис. 6-1. Рыхлая соединительная ткань. 1. Коллагеновые во­локна. 2. Эластические волокна. 3. Фибробласт. 4. Фиброцит. 5. Макрофаг. 6. Плазмоцит. 7. Жировая клетка. 8. Тканевой базо­фил (тучная клетка). 9. Перицит. 10. Пигментная клетка. 11. Ад­вентициальная клетка. 12. Основное вещество. 13. Клетки крови (лейкоциты). 14. Ретикулярная клетка.

2. Макрофаги – блуждающие, активно фагоцитирую­щие клетки. Форма макрофагов различна: встречаются клетки уплощенные, округлые, вытянутые и неправильной формы. Их границы всегда четко очерчены, а края неровные. Цитолемма макрофагов образует глубокие складки и длин­ные микро­выросты, с помощью которых эти клетки захваты­вают инородные частицы. Как правило, имеют одно ядро. Цитоплазма базофильна, богата лизосомами, фагосомами и пиноцитозными пузырьками, содержит умеренное количе­ство митохондрий, гранулярной эндоплазматической сети, комплекса Гольджи, включений гликогена, липидов и др.

Функция: фагоцитоз, секретируют в межклеточное ве­щество биологичес­ки активные факторы и ферменты (интер­ферон, лизоцим, пирогены, протеазы, кислые гидролазы и др.), чем обеспечиваются их разнообразные защитные функ­ции; вырабатывают медиаторы-монокины, интерлейкин I, активирующий синтез ДНК в лимфоцитах; факторы, активи­рующие выработку иммуноглобулинов, стимулирующие дифференцировку Т- и В-лимфоцитов, а также цитолитиче­ские факторы; обеспечивают процессинг и презентацию ан­тигенов.

3. Плазматические клетки (плазмоциты). Их вели­чина колеблется от 7 до 10 мкм. Форма клеток округлая или овальная. Ядра относительно небольшие, круглой или оваль­ной формы, расположены эксцентрично. Цито­плазма резко базофильна, содержит хорошо развитую гранулярную эндо­плазматическую сеть, в которой синтезируются белки (анти­тела). Базофилии лишена только небольшая светлая зона около ядра образующая так называемую сферу, или дворик. Здесь обнаружи­ваются центриоли и комплекс Гольджи.

Функции: эти клетки обеспечивают гуморальный имму­нитет. Они синтезируют антитела – гаммаглобулины (белки), вырабатывающиеся при по­явлении в организме антигена и обезвреживающие его.

4. Тканевые базофилы (тучные клетки). Клетки их имеют разнообразную форму, иногда с короткими широкими отростками, что обусловлено способностью их к амебоидным движениям. В цитоплазме находится специфическая зерни­стость (синего цвета), напоминающая гранулы базофильных лейкоцитов. В ней содержится гепарин, гиалуроновая ки­слота, гистамин и серотонин. Органеллы тучных клеток раз­виты слабо.

Функция: тканевые базофилы являются регуляторами местного гомеостаза соединительной ткани. В частности, ге­парин снижает проницаемость межклеточного вещества, свертываемость крови, оказывает противовоспалительное влияние. Гистамин же выступает как его антагонист.

5. Адипоциты (жировые клетки) – располагаются группами, реже – поодиночке. Накапливаясь в больших ко­личествах, эти клетки образу­ют жировую ткань. Форма оди­ночно расположенных жировых клеток шаровидная, они со­держат одну большую каплю нейтрального жира (триглице­ридов), занимающую всю централь­ную часть клетки и окру­женную тонким цитоплазматическим ободком, в утолщенной части которого лежит ядро. В связи с этим, адипоциты имеют перстневидную форму. Кроме того, в цитоплазме адипоцитов имеется небольшое количество холестерина, фосфолипидов, свободных жирных кислот и др.

Функция: обладают способностью накапливать в боль­ших количествах резервный жир, принимающий участие в трофике, энергообразовании и метаболизме воды.

6. Пигментные клетки – имеют короткие, непостоян­ной формы отростки. Эти клетки содержат в своей цито­плазме пигмент меланин, способный поглощать УФЛ.

Функция: защита клеток от действия УФО.

7. Адвентициальные клетки — малоспециализирован­ные клетки, сопровож­дающие кровеносные сосуды. Они имеют уплощенную или ве­ретенообразную форму со слабо­базофильной цитоплазмой, овальным ядром и слаборазви­тыми органеллами.

Функция: выполняет роль камбия.

8. Перициты имеют отросчатую форму и в виде кор­зинки окружают кровеносные капилляры, располагаясь в расщелинах их базальной мембраны.

Функция: регулируют изменения просвета кровеносных капилляров.

9. Лейкоциты мигрируют в соединительную ткань из крови.

Функция: см. клетки крови.

Межклеточное вещество состоит из основного веще­ства и расположенных в них волокон – коллагеновых, эла­стических и ретикулярных.

Коллагеновые волокна в рыхлой неоформленной во­локнистой соединительной ткани располагаются в различных направлениях в виде скрученных округлых или уплощенных тяжей толщиной 1-3 мкм и более. Длина их неопределенна. Внутренняя структура коллагенового волокна определяется фибриллярным белком – коллагеном, который синтезируется в рибосомах гранулярной эндоплазматической сети фиброб­ластов. В строении этих волокон выделяют несколько уров­ней организации (рис. 6-2):

— Первый – молекулярный уровень – представлен моле­кулами белка коллагена, имеющих в дли­ну около 280 нм и ширину 1,4 нм. Они построены из трипле­тов – трех полипеп­тидных цепочек предшественника коллагена – проколла­гена, скрученных в единую спираль. Каждая цепочка про­коллагена содержит наборы из трех различных аминокислот, многократно и за­кономерно повторяющихся на протяжении ее длины. Первая ами­нокислота в таком наборе может быть любой, вторая – пролин или лизин, третья – глицин.

Рис. 6-2. Уровни структурной организации коллагенового волокна (схема).

А. I. Полипептидная цепочка.

II. Молекулы коллагена (тропоколлаген).

III. Протофибриллы (микрофибриллы).

IV. Фибрилла минимальной толщины, у которой становится видимой поперечная исчерченность.

V. Коллагеновое волокно.

Б. Спиральная структура макромол­лекулы коллагена (по Ричу); мелкие светлые кружочки – глицин, круп­ные светлые кружочки – пролин, заштрихованные кружочки – гидро­кси­пролин. (По Ю. И. Афанасьеву, Н. А. Юриной).

— Второй – надмолекулярный, внеклеточный уровень – представляет соединенные в длину и поперечно связанные с по­мощью водородных связей молекулы коллагена. Сначала образу­ются протофцбриллы , а 5-б протофибрилл, скреплен­ных между собой боковыми связями, составляют микрофиб­риллы, толщиной около 10 нм. Они различимы в электрон­ном мик­роскопе в виде слабоизвилистых нитей.

Третий, фибриллярный уровень. При участии гликоза­мино-гликанов и гликопротеинов микрофибриллы образуют пучки фибрилл. Они представляют собой поперечно исчер­ченные структуры толщиной в среднем 50–100 нм. Период повторяемости темных и светлых участков 64 нм.

Четвертый , волоконный уровень. В состав коллагено­вого волокна (толщиной 1-10 мкм) в зави­симости от топо­графии входят от нескольких фибрилл до несколь­ких десят­ков.

Функция: определяют прочность соединительных тка­ней.

Эластические волокна – их форма округлая или упло­щенная, широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых. Основ­ным химическим компонентом эластических волокон яв­ля­ется глобулярный белок эластин, синтезируемый фибробла­стами. Электронная микроскопия позволила установить, что эласти­ческие волокна в центре содержат аморфный компо­нент, а по пе­риферии - микрофибриллярный. По прочности эластические волокна уступают коллагеновым.

Функция: определяет эластичность и растяжимость со­единительной ткани.

Ретикулярные волокна относятся к типу коллагеновых волокон, но отличаются меньшей толщиной, ветвистостью и анастомозами. Содержат повышенное количество углеводов, которые синтези­руются ретикулярными клетками и липидов. Устойчивы к действию кислот и щелочей. Обра­зуют трех­мерную сеть (ретикулум), откуда и берут свое название.

Основное вещество – это студнеобразная гидрофильная среда, в образовании кото­рой важную роль играют фиброб­ласты. В его состав входят сульфатированные (хондроитин­серная кислота, кератин-сульфат, и др.) и несульфатирован­ные (гиалуроновая кислота) гликозаминогликаны, которые обусловливают консистенцию и функциональные особенно­сти основного вещества. Кроме указанных компонентов, в состав основного вещества входят липиды, альбумины и глобулины крови, минеральные веще­ства (соли натрия, ка­лия, кальция и др.).

Функция: транспорт метаболитов между клетками и кровью; меха­ническая (связывание клеток и волокон, адгезия клеток и др.); опорная; защитная; метаболизм воды; регуля­ция ионного состава.

Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности , отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:

· многообразие клеточных форм (9 клеточных типов);

· преобладание в межклеточном веществе аморфного вещества над волокнами.

Функции рыхлой волокнистой соединительной ткани:

· трофическая;

· опорнаяобразует строму паренхиматозных органов;

· защитная - неспецифическая и специфическая (участие в иммунных реакциях) защита;

· депо воды, липидов, витаминов, гормонов;

· репаративная (пластическая).

Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество.

2. Структурная и функциональная характеристика клеточных типов

I. Фибробласты - преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:

· малодифференцированные клетки;

· дифференцированные или зрелые клетки, или собственно фибробласты;

· старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты;

· миофибробласты;

· фиброкласты.

Преобладающей формой являются зрелые фибробласты , функция которых заключается в синтезе и выделении в межклеточную среду белков -коллагена и эластина, а также гликозоаминогликанов, из которых внеклеточно осуществляется образование различных типов волокон и аморфного вещества. Следовательно, межклеточное вещество является в основном продуктом деятельности фибробластов, частично других клеток, а также плазмы крови.

Для структурной организации фибробластов характерно выраженное развитие синтетического аппарата - зернистой эндоплазматической сети и транспортного аппарата - пластинчатого комплекса Гольджи. Остальные органеллы развиты умеренно. В фиброцитах зернистая эндоплазматическая сеть и пластинчатый комплекс в значительной степени редуцированы. В цитоплазме фибробластов содержится микрофиламенты, содержащие сократительные белки (актин и миозин), но особенно развиты эти органеллы в миофибробластах, благодаря которым они осуществляют тракцию (стягивание, сморщивание) молодой соединительной ткани и образование рубца.

Для фиброкластов характерно содержание в цитоплазме большого числа лизосом. Эти клетки способны выделять лизосомальные ферменты в межклеточную среду и с их помощью расщеплять коллагеновые или эластические волокна на фрагменты, а затем фагоцитировать и расщеплять эти ферменты внутриклеточно. Следовательно, для фибробластов характерно (при определенных условиях) осуществление лизиса межклеточного вещества, в том числе волокон (например, при инволюциях матки после родов).

Таким образом, различные формы фибробластов образуют межклеточное вещество соединительной ткани (фибробласты), поддерживают его в определенном структурном состоянии (фиброциты), и разрушают его при определенных условиях (фиброкласты). Благодаря этим свойствам фибробластов осуществляется одна из функций волокнистой соединительной ткани - репаративная (пластическая).

II. Макрофаги - клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами . Различают также макрофаги серозных полостей (перитонеальные и плевральные), альвеолярные, макрофаги печени - купферовские клетки , макрофаги центральной нервной системы - глиальные макрофаги , остеокласты. Все эти разнообразные формы макрофагов объединяются в мононуклеарную фагоцитарную систему (МФС) или макрофагическую систему организма.

По функциональному состоянию макрофаги подразделяются на резидуальные (неактивные) и активированные. В зависимости от этого отличается и их внутриклеточная организация. Наиболее характерной структурной особенностью макрофагов является выраженной лизосомальный аппарат, то есть в их цитоплазме содержится много лизосом и фагосом. Особенностью гистиоцитов является также наличие их поверхности многочисленных складок, инвагинаций и псевдоподий, отражающих передвижение клеток или захват им разнообразных частиц. В плазмолемме макрофагов содержатся разнообразные рецепторы, с помощью которых они распознают различные, в том числе антигенных частицы, а также разнообразные биологически активные вещества.

Защитная функция макрофагов проявляется в разных формах:

· неспецифическая защита - защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания;

· выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие;

· специфическая или иммунологическая защита - участие в разнообразных иммунных реакциях.

Фагоцитируя антигенные вещества, макрофаги выделяют, концентрируют, а затем выносят на плазмолемму их активные химические группировки - антигенные детерминанты , а затем передают их на лимфоциты. Эта функция называется антиген-представляющей. Посредством ее макрофаги запускают иммунные реакции, так как установлено, что большинство антигенных веществ неспособно запускать иммунные реакции самостоятельно, то есть действовать непосредственно на рецепторы лимфоцитов. Кроме того, активированные макрофаги выделяют некоторые биологически активные вещества - монокины , которые оказывают регулирующее влияние на различные стороны иммунных реакций. Наконец, макрофаги принимают участие в заключительных стадиях иммунных реакций как гуморального, так и клеточного иммунитета. В гуморальном иммунитете они фагоцитируют иммунные комплексы антиген-антитело, в клеточном иммунитете под влиянием лимфокинов макрофаги приобретают киллерные свойства и могут разрушать чужеродные, в том числе опухолевые клетки. Таким образом, не являясь иммунными клетками, макрофаги принимают активное участие в иммунных реакциях.

Макрофаги также синтезируют и выделяют в межклеточную среду около ста различных биологически активных веществ. Поэтому макрофаги можно отнести к секреторным клеткам.

III. Тканевые базофилы (тучные клетки, лаброциты) являются истинными клетками рыхлой волокнистой соединительной ткани. Функция этих клеток заключается в регуляции местного тканевого гомеостаза, то есть в поддержании структурного, биохимического и функционального постоянства микроокружения. Это достигается посредством синтеза тканевыми базофилами и последующим выделением в межклеточную среду гликозоаминогликанов (гепарина и хондроитинсерных кислот), гистамина, серотонина и других биологически активных веществ, которые оказывают влияние как на клетки и межклеточное вещество соединительное ткани, так и особенно на микроциркуляторное русло, повышая проницаемость гемокапилляров и, тем самым усиливая гидратацию межклеточного вещества. Кроме того продукты тучных клеток оказывают влияние на иммунные процессы, а также на процессы воспаления и аллергии. Источники образования тучных клеток пока не установлены.

Для ультраструктурной организации тканевых базофилов характерно наличие в цитоплазме двух типов гранул:

· метахроматических гранулокрашивающихся основными красителями с изменением цвета окраски;

· ортохроматических гранулокрашивающихся основными красителями без изменения цвета и представляющих собой лизосомы.

При возбуждении тканевых базофилов из них выделяются биологически активные вещества двумя способами:

· посредством выделения гранулдегрануляции;

· посредством диффузного выделения через мембрану гистамина, который усиливает сосудистую проницаемость и вызывает гидратацию (отек) основного вещества, усиливая тем самым воспалительную реакцию.

Тучные клетки принимают участие в иммунных реакциях. При попадании в организм некоторых антигенных веществ плазмоцитами синтезируются иммуноглобулины класса Е, которые затем адсорбируются на цитолемме тучных клеток. При повторном попадании в организм этих же антигенов на поверхности тучных клеток образуются иммунные комплексы антиген-антитело, которые вызывают резкую дегрануляцию тканевых базофилов, а выделяющиеся в большом количестве вышеназванные биологически активные вещества обуславливают быстрое развитие аллергических и анафилактических реакций.

IV. Плазматические клетки (плазмоциты) являются клетками иммунной системы - эффекторными клетками гуморального иммунитета. Образуются плазмоциты из В-лимфоцитов при воздействии на них антигенных веществ. Большинство их локализуется в органах иммунной системы (лимфоузлах, селезенке, миндалинах, фолликулах), но значительная часть плазмоцитов распределяется в соединительной ткани. Функции плазмоцитов заключаются в синтезе и выделении в межклеточную среду антител - иммуноглобулинов, которые подразделяются на пять классов. Исходя из названной функции можно предложить, что в этих клетках хорошо развит синтетический и выделительный аппарат. И действительно, на электронограммах плазмоцитов видно, что почти вся цитоплазма заполнена зернистой эндоплазматической сетью, оставляя небольшой участок, примыкающий к ядру, в котором расположен пластинчатый комплекс Гольджи и клеточный центр. При изучении плазмоцитов под световым микроскопом при обычной гистологической окраске (гематоксилин-эозин) они имеют округлую или овальную форму, базофильную цитоплазму, эксцентрично расположенное ядро, содержащее глыбки гетерохроматина в виде треугольников (колесообразное ядро). К ядру прилежит бледно окрашенный участок цитоплазмы - «светлый дворик», в котором локализуется комплекс Гольджи. Число плазмоцитов отражает интенсивность иммунных реакций.

V. Жировые клетки (адипоциты) содержатся в рыхлой соединительной ткани в разных количествах, в разных участках тела и в разных органах. Располагаются они обычно группами вблизи сосудов микроциркуляторного русла. При значительном скоплении они образуют белую жировую ткань. Адипоциты имеют характерную морфологию - почти вся цитоплазма заполнена одной жировой каплей, а органеллы и ядро отодвигаются на периферию. При спиртовой фиксации и проводке жир растворяется и клетка приобретает форму перстня с печаткой, а скопление жировых клеток в гистологическом препарате имеет ячеистый, сотообразный вид. Выявляются липиды только после формалиновой фиксации гистохимическими методами (судан, осмий).

Функции жировых клеток:

· депо энергетических ресурсов;

· депо воды;

· депо жирорастворимых витаминов.

Источником образования жировых клеток являются адвентициальные клетки, которые при определенных условиях накапливают липиды и превращаются в адипоциты.

VI. Пигментные клетки - (пигментоциты, меланоциты)это клетки отростчатой формы, содержащие в цитоплазме пигментные включения -меланин. Пигментные клетки не являются истинными клетками соединительной ткани, так как во-первых, они локализуются не только в соединительной ткани, но и в эпителиальной, а во-вторых, они образуются не из мезенхимальных клеток, а из нейробластов нервных гребешков. Синтезируя и накапливая в цитоплазме пигмент меланин (при участии специфических гормонов), пигментоциты выполняют защитную функциюзащиту организма от избыточного ультрафиолетового излучения.

VII. Адвентициальные клетки локализуются в адвентиции сосудов. Имеют вытянутую и уплощенную форму. Цитоплазма слабо базофильна и содержит незначительное число органелл.

VIII. Перециты - клетки уплощенной формы, локализуются в стенке капилляров, в расщеплении базальной мембраны. Они способствуют передвижению крови в капиллярах, перенимая их.

IX. Лейкоциты - лимфоциты и нейтрофилы. В норме в рыхлой волокнистой соединительной ткани обязательно содержатся в различных количествах клетки крови - лимфоциты и нейтрофилы. При воспалительных состояниях количество их резко увеличивается (лимфоцитарная или нейтрофильная инфильтрация). Эти клетки выполняют защитную функцию.

3. Межклеточное вещество соединительной ткани Оно состоит из двух структурных компонентов:

· основного или аморфного вещества;

· волокон.

Основное или аморфное вещество состоит из белков и углеводов. Белки представлены в основном коллагеном, а также альбуминами и глобулинами. Углеводы представлены полимерными формами, в основном гликозоаминогликанами (сульфатированными - хондроитинсерными кислотами, дерматансульфатом, кератинсульфатом, гепаринсульфатом, и несульфатированными - гиалуроновой кислотой). Углеводные компоненты, образуя длинные полимерные цепи, способны удерживать воду в различном количестве. Количество воды зависит от качества углеводного компонента. В зависимости от содержания воды аморфное вещество может быть более или менее плотным (в форме золя или геля), что определяет и функциональную роль данной разновидности соединительной ткани. Аморфное вещество обеспечивается транспорт веществ из соединительной ткани к эпителиальной ткани и обратно, в том числе транспорт веществ из крови к клеткам и обратно. Аморфное вещество образуется прежде всего за счет деятельности фибробластов (коллаген, гликозоаминогликаны), а также за счет веществ плазмы крови (альбумины, глобулины).

Волокнистый компонент межклеточного вещества представлен коллагеновыми, эластическими и ретикулярными волокнами. В различных органах соотношение названных волокон неодинаково. В рыхлой соединительной волокнистой ткани преобладают коллагеновые волокна.

Коллагеновые (клей-дающие) волокна имеют белый цвет и различную толщину (от 1-3 до 10 и более мкм). Они обладают высокой прочностью и малой растяжимостью, не ветвятся, при помещении в воду набухают, при нахождении в кислотах и щелочах увеличиваются в объеме и укорачиваются на 30 %. Каждое волокно состоит из двух химических компонентов:

· фибриллярного белка коллагена;

· углеводного компонента - гликозоаминогликанов и протеогликанов.

Оба эти компонента синтезируются фибробластами и выделяются во внеклеточную среду, где и осуществляется их сборка и построение волокна. В структурной организации коллагенового волокна выделяют пять уровней. Первый (полипептидный) уровень представлен полипептидными цепочками, состоящих из трех аминокислот: пролина, глицина, лизина. Второй (молекулярный) уровень представлен молекулой белка коллагена (длина 280 нм, ширина 1,4 нм), состоящей из трех полипептидных цепочек, закрученных в спираль. Третий уровень - протофибриллы (толщиной до 10 нм), состоящие из нескольких продольно расположенных молекул коллагена, соединенных между собой водородными связями. Четвертый уровень -микрофибриллы (толщиной от 11-12 нм и более), состоящие из 5-6 протофибрилл, связанных боковыми цепями. Пятый уровень - фибрилла или коллагеновое волокно (толщина 1-10 мкм) состоящие из нескольких микрофибрилл (в зависимости от толщины), связанных гликозоаминогликанами и протеогликанами. Коллагеновые волокна имеют поперечную исчерченность, обусловленную как расположением цепей в молекуле коллагена, так и расположением аминокислот в полипептидных цепях. Коллагеновые волокна с помощью углеводных компонентов соединяются в пучки толщиной до 150 нм.

В зависимости от порядка расположения аминокислот в полипептидных цепочках, от степени их гидроксилирования и от качества углеводного компонента различают 12 типов белка коллагена, из которых хорошо изучены пять типов. Эти разновидности белка коллагена входят не только в состав коллагеновых волокон, но и в состав базальных мембран эпителиальных тканей, хрящевых тканей, стекловидного тела и других структур. При развитии некоторых патологических процессов происходит распад коллагена и поступление его в кровь. В плазме крови биохимически определяется тип коллагена, а следовательно определяется и предположительная область распада и его интенсивность.

Эластические волокна характеризуются высокой эластичностью, то есть способностью растягиваться и сокращаться, но незначительной прочностью, устойчивы к кислотам и щелочам, при погружении в воду не набухают. Эластические волокна тоньше коллагеновых (1-2 мкм), не имеют поперечной исчерченности, по ходу разветвляются и анастомозируют друг с другом, образуя часто эластическую сеть. Химический составбелок эластин и гликопротеины. Оба компонента синтезируются и выделяются фибробластами, а в стенке сосудов - гладкомышечными клетками. Белок эластин отличается от белка коллагена как составом аминокислот, так и их гидроксилированностью. Структурно эластическое волокно организовано следующим образом: центральная часть волокна представлена аморфным компонентом из молекул эластина , периферическая часть представлена мелкофибриллярной сетью. Соотношение аморфного и фибриллярного компонента в эластических волокнах может быть различным. В большинстве волокон преобладает аморфный компонент. При равенстве аморфного и фибриллярного компонентов волокна называются элауниновыми . Встречаются также эластические волокна - окситалановые, состоящие только из фибриллярного компонента. Локализуются эластические волокна прежде всего в тех органах, которые постоянно изменяют свой объем (в легких, сосудах, аорте, связки и другие).

Ретикулярные волокна по своему химическому составу близки к коллагеновым, так как они состоят из белка коллагена (3 типа) и углеводного компонента. Ретикулярные волокна тоньше коллагеновых, имеют слабовыраженную поперечную исчерченность. Разветвляясь и анастомозируя, они образуют мелкопетлистые сети, откуда и происходит их название. В ретикулярных волокнах в отличие от коллагеновых, более выражен углеводный компонент, который хорошо выявляется солями азотнокислого серебра и потому эти волокна еще называются аргирофильными . Следует помнить однако, что аргирофильными свойствами обладают и незрелые коллагеновые волокна, состоящие из белка проколлагена. По своим физическим свойствам ретикулярные волокна занимают промежуточное положение между коллагеновыми и эластическими волокнами. Образуются они за счет деятельности не фибробластов, а ретикулярных клеток. Локализуется в основном в кроветворных органах, составляя их строму.

Плотная волокнистая соединительная ткань отличается от рыхлой преобладанием в межклеточном веществе волокнистого компонента над аморфным. В зависимости от характера расположения волокон плотная волокнистая соединительная ткань подразделяется на оформленную - волокна располагаются упорядочено, то есть обычно параллельно друг другу, и неоформленную - волокна расположены неупорядочено. Плотная оформленная соединительная ткань представлена в организме в виде сухожилий, связок, фиброзных мембран. Плотная волокнистая соединительная неоформленная ткань образует сетчатый слой дермы кожи. Помимо содержания большого числа волокон, плотная волокнистая соединительная ткань характеризуется бедностью клеточных элементов, которые представлены в основном фиброцитами.

Сухожилие состоит в основном из плотной оформленной соединительной ткани, но содержит также и рыхлую волокнистую соединительную ткань, образующую прослойки. На поперечном срезе сухожилия видно, что оно состоит из параллельно расположенных коллагеновых волокон, образующих пучки 1, 2, 3 и возможно 4 порядков. Пучки 1 порядка, наиболее тонкие, отделены друг от друга фиброцитами. Пучки 2 порядка состоят из нескольких пучков 1 порядка, окруженных по периферии прослойкой рыхлой волокнистой соединительной ткани, составляющей эндотеноний. Пучки 3 порядка состоят из пучков 2 порядка и окружены более выраженными прослойками рыхлой соединительной ткани - перитенонием . Все сухожилие окружено по периферии эпитенонием . В прослойках рыхлой волокнистой соединительной ткани проходят сосуды и нервы, обеспечивающие трофику и иннервацию сухожилия.

У новорожденных и детей в волокнистой соединительной ткани в аморфном веществе содержится много воды, связанной гликозоаминогликанами. Коллагеновые волокна тонкие и состоят не только из белка коллагена, но и проколлагена . Эластические волокна хорошо развиты. Аморфный и волокнистый компонент соединительной ткани в совокупности обуславливает упругость и эластичность кожи у детей. С увеличением возраста в постнатальном онтогенезе содержание гликозоаминогликанов в аморфном веществе уменьшается, а вместе с ними уменьшается и содержание воды. Коллагеновые волокна разрастаются и образуют толстые грубые пучки. Эластические волокна в значительной степени разрушаются, вследствие этого кожа у пожилых и старых людей становится неэластичной и дряблой.

4. Соединительные ткани со специальными свойствами

К ним относятся ретикулярная, жировая, слизистая и пигментная ткани.

Ретикулярная ткань состоит из ретикулярных клеток и ретикулярных волокон. Эта ткань образует строму всех кроветворных органов (за исключением тимуса) и, помимо опорной функции, выполняет и другие функции: обеспечивает трофику гемопоэтических клеток, влияет на направление их дифференцировки в процессе кроветворения и иммуногенеза, осуществляет фагоцитоз антигенных веществ и представление антигенных детерминант иммунокомпетентным клеткам.

Жировая ткань состоит из скопления жировых клеток и подразделяется на две разновидности: белую и бурую жировую ткани. Белая жировая ткань широко распространена в различных частях тела и во внутренних органах, неодинаково выражена у разных субъектов и на протяжении онтогенеза. Она состоит из скопления типичных жировых клетокадипоцитов. Группы жировых клеток образуют дольки жировой ткани, между которыми проходят тонкие прослойки соединительной ткани, содержащие сосуды и нервы. В жировых клетках активно протекают обменные процессы.

Функции белой жировой ткани:

· депо энергии (макроэргов);

· депо воды;

· депо жирорастворимых витаминов;

· теплозащита;

· механическая защита некоторых органов (глазного яблока и других).

Бурая жировая ткань встречается только у новорожденных детей. Она локализуется только в определенных местах: за грудиной, около лопаток, на шее, вдоль позвоночника. Бурая жировая ткань состоит из скопления бурых адипоцитов и по морфологии, и по характеру обмена веществ в них. В цитоплазме бурых жировых клеток содержится большое количество мелких липосом, равномерно распределенных по всей цитоплазме. Ядро расположено в центре клетки. В цитоплазме содержится также большое число митохондрий, содержащих цитохромы, которые и придают ей бурый цвет. Окислительные процессы в бурых жировых клетках протекают в 20 раз интенсивнее, чем в белых. При этом образующаяся в результате окисления и фосфорилирования разобщены и энергия, образующаяся в результате окисления липидов, выделяется в виде тепла. Поэтому основная функция бурой жировой ткани заключается в теплообразовании, которое особенно интенсивно протекает при понижении температуры окружающей среды.

Слизистая соединительная ткань встречается только в эмбриональном периоде в провизорных органах, и прежде всего в составе пупочного канатика. Она состоит в основном из межклеточного вещества, в котором локализуются фибробластоподобные клетки, синтезирующие муцины (слизь). Аморфное вещество содержит в большом количестве гиалуроновую кислоту, которая связывает большое количество молекул воды. На поздних стадиях эмбрионального развития в межклеточном веществе определяются тонкие коллагеновые волокна. Содержанием большого количества воды в аморфном веществе обеспечивается упругость (тургор), которая препятствует сдавлению сосудов в пупочном канатике и нарушению плацентарного кровообращения.

Пигментная соединительная ткань представляет собой участки ткани, в которых содержится скопление меланоцитов: область сосков, мошонки и анального отверстия, сосудистая оболочка глазного яблока, родимые пятна. Значение скопления в этих участках меланоцитов остается не вполне выясненным. В составе радужки глазного яблока меланоциты препятствуют прохождению света через ее ткани.


Top