Поведение энтропии в процессах изменения агрегатного состояния. Изменение агрегатных состояний вещества Процесс перехода из газа в твердое

Важно знать и понимать, каким образом осуществляются переходы между агрегатными состояниями веществ . Схему таких переходов изобразим на рисунке 4.

5 - сублимация (возгонка) - переход из твердого состояния в газообразное, минуя жидкое;

6 - десублимация - переход из газообразного состояния в твердое, минуя жидкое.

Б. 2 Плавление льда и замерзание воды (кристаллизация)
Если поместить лед в колбу и начать его нагревать с помощью горелки, то можно будет заметить, что его температура начнет повышаться, пока не достигнет температуры плавления (0 o C). Затем начнется процесс плавления, но при этом температура льда повышаться не будет, и только после окончания процесса плавления всего льда температура образовавшейся воды начнет повышаться.

Определение. Плавление - процесс перехода из твердого состояния в жидкое. Этот процесс происходит при постоянной температуре.

Температура, при которой происходит плавление вещества, называется температурой плавления и является измеренной величиной для многих твердых веществ, а потому табличной величиной. Например, температура плавления льда равна 0 o C, а температура плавления золота 1100 o C.

Обратный плавлению процесс - процесс кристаллизации - также удобно рассматривать на примере замерзания воды и превращения ее в лед. Если взять пробирку с водой и начать ее охлаждать, то сначала будет наблюдаться уменьшение температуры воды, пока она не достигнет 0 o C, а затем ее замерзание при постоянной температуре), и уже после полного замерзания дальнейшее охлаждение образовавшегося льда.
Если описанные процессы рассматривать с точки зрения внутренней энергии тела, то при плавлении вся полученная телом энергия расходуется на разрушение кристаллической решетки и ослабление межмолекулярных связей, таким образом, энергия расходуется не на изменение температуры, а на изменение структуры вещества и взаимодействия его частиц. В процессе же кристаллизации обмен энергиями происходит в обратном направлении: тело отдает тепло окружающей среде, а его внутренняя энергия уменьшается, что приводит к уменьшению подвижности частиц, увеличению взаимодействия между ними и отвердеванию тела.

График плавления и кристаллизации

Полезно уметь графически изобразить процессы плавления и кристаллизации вещества на графике. По осям графика расположены: ось абсцисс - время, ось ординат - температура вещества. В качестве исследуемого вещества примем лед при отрицательной температуре, т. е. такой, который при получении тепла не начнет сразу плавиться, а будет нагревать до температуры плавления. Опишем участки на графике, которые представляют собой отдельные тепловые процессы:
Начальное состояние - a: нагревание льда до температуры плавления 0 o C;
a - b: процесс плавления при постоянной температуре 0 o C;
b - точка с некоторой температурой: нагревание образовавшейся из льда воды до некоторой температуры;
Точка с некоторой температурой - c: охлаждение воды до температуры замерзания 0 o C;
c - d: процесс замерзания воды при постоянной температуре 0 o C;
d - конечное состояние: остывание льда до некоторой отрицательной температуры.

: [в 30 т.] / гл. ред. А. М. Прохоров ; 1969-1978, т. 1).

  • Агрегатные состояния // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия (тт. 1-2); Большая Российская энциклопедия (тт. 3-5), 1988-1999. - ISBN 5-85270-034-7 .
  • Владимир Жданов. Плазма в космосе (неопр.) . Кругосвет . Дата обращения 21 февраля 2009. Архивировано 22 августа 2011 года.
  • В природе имеются некоторые жидкости, которые в обычных условиях эксперимента невозможно перевести при охлаждении в кристаллическое состояние. Молекулы отдельных органических полимеров столь сложны, что образовать регулярную и компактную решётку не могут - при охлаждении всегда переходят только в стеклообразное состояние (см. подробнее - DiMarzio E. A. Equilibrium theory of glasses // Ann. New York Acad. Sci. 1981. Vol. 371. P. 1-20). Редкий вариант «некристаллизуемости» жидкости - переход в стеклообразное состояние при температурах, близких к температуре ликвидуса T L или даже более высоких… Подавляющее большинство жидкостей при температурах ниже T L при больших или меньших изотермических выдержках, но в разумной с точки зрения эксперимента длительности, всегда переходят в кристаллическое состояние. Для жидкостей определённых химических соединений подразумевается не T L , а температура плавления кристаллов, но для упрощения - точки отсутствия (солидус) и начала кристаллизации здесь обозначены T L вне зависимости от однородности вещества. Возможность перехода из жидкого в стеклообразное состояние обусловлена скоростью охлаждения в той области температур, где наиболее высока вероятность кристаллизации - между T L и нижней границей интервала стеклования. Чем быстрее охлаждается вещество от состояния стабильной жидкости, тем вероятней то, что оно, минуя кристаллическую фазу, перейдёт в стеклообразное. Любое вещество, способное перейти в стеклообразное состояние, может характеризоваться так называемой критической скоростью охлаждения - минимальной допустимой, при которой оно после охлаждения обратимо для перехода в стеклообразное состояние. - Шульц М. М. , Мазурин О. В. ISBN 5-02-024564-X
  • Шульц М. М. , Мазурин О. В. Современное представление о строении стёкол и их свойствах. - Л.: Наука. 1988 ISBN 5-02-024564-X
  • "Фермионный конденсат" (неопр.) . scientific.ru. Архивировано 22 августа 2011 года.
  • K. v. Klitzing, G. Dorda, M. Pepper New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance Phys. Rev. Lett. 45 , 494 (1980) DOI :10.1103/PhysRevLett.45.494
  • Нобелевский лауреат по физике за 1985 год
  • C. Fuchs, H. Lenske, H.H. Wolter. Dencity Dependent Hadron Field Theory (неопр.) . arxiv.org (29.06.1995). Дата обращения 30 ноября 2012.
  • И. М. Дремин, А. В. Леонидов. Кварк-глюонная среда (неопр.) С. 1172. Успехи физических наук (Ноябрь 2010 года). doi :10.3367/UFNr.0180.201011c.1167 . - УФН 180 1167–1196 (2010). Дата обращения 29 марта 2013. Архивировано 5 апреля 2013 года.
  • В зависимости от условий тела могут находиться в жидком, твердом или газообразном состоянии. Эти состояния называются агрегатными состояниями вещества .

    В газах расстояние между молекулами много больше размеров молекул. Если газу не мешают стенки сосуда, его молекулы разлетаются.

    В жидкостях и твердых телах молекулы расположены ближе друг к другу и поэтому не могут удаляться далеко друг от друга.

    Переход из одного агрегатного состояния в другое называется фазовым переходом .

    Переход вещества из твердого состояния в жидкое называется плавлением , а температуру, при которой это происходит, – температурой плавления . Переход вещества из жидкого состояния в твердое называется кристаллизацией , а температуру перехода – температурой кристаллизации .

    Количество теплоты, которое выделяется при кристаллизации тела либо поглощается телом при плавлении, отнесенное к единице массы тела, называется удельной теплотой плавления (кристаллизации) λ:

    При кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении.

    Переход вещества из жидкого состояния в газообразное называется парообразованием . Переход вещества из газообразного состояния в жидкое называется конденсацией . Количество теплоты, необходимое для парообразования (выделяющееся при конденсации):

    Q = Lm ,
    где L – удельная теплота парообразования (конденсации).

    Парообразование, происходящее с поверхности жидкости, называется испарением . Испарение может происходить при любой температуре. Переход жидкости в пар, происходящий по всему объему тела, называется кипением , а температуру, при которой жидкость кипит, – температурой кипения .

    Наконец, сублимация – это переход вещества из твердого состояния непосредственно в газообразное, минуя жидкую стадию.

    Если прочие параметры внешней среды (в частности, давление) остаются постоянными, то температура тела в процессе плавления (кристаллизации) и кипения не изменяется.

    Если количество молекул, покидающих жидкость, равно количеству молекул, возвращающихся в жидкость, то говорят, что наступило динамическое равновесие между жидкостью и ее паром. Пар, находящийся в динамическом равновесии со своей жидкостью, называется

    Установлению идеального порядка в расположении атомов, т. е. образованию твердого тела, препятствуют тепловые движения, главной особенностью которых является, как мы знаем, хаотичность, беспорядочность. Поэтому для того, чтобы вещество могло находиться в твердом состоянии, его температура должна быть достаточно низкой - настолько низкой, чтобы энергия тепловых движений была меньше, чем потенциальная энергия взаимодействия атомов.

    Вполне идеальным кристаллом, в котором все атомы находятся в равновесии и обладают минимальной энергией, тело может быть только при абсолютном нуле. В действительности все вещества становятся твердыми при значительно более высоких температурах. Исключение составляет только гелий, который остается жидким и при абсолютном нуле, но это связано с некоторыми квантовыми эффектами, о которых мы кратко скажем ниже.

    В твердое состояние вещество может перейти как из жидкого, так и из газообразного состояния. И в том и в другом случае такой переход есть переход из состояния, лишенного симметрии, в состояние, в котором симметрия существует (это во всяком случае относится к дальнему порядку, существующему в кристаллах, но не существующему ни в жидких, ни в газообразных веществах). Поэтому переход в твердое состояние должен происходить скачком, т. е. при определенной температуре, в отличие от перехода газ - жидкость, который, как мы знаем, может происходить и непрерывным образом.

    Рассмотрим сначала превращение жидкость-твердое тело. Процесс образования твердого тела при охлаждении жидкости есть процесс образования кристалла (кристаллизация), (и происходит он при определенной температуре температуре кристаллизации или отвердевания. Так как при таком превращении энергия уменьшается, то оно сопровождается выделением энергии в виде скрытой теплоты кристаллизации. Обратное превращение - плавление - также происходит скачком при тон же температуре и сопровождается поглощением энергии в виде

    той теплоты плавления, равной по величине теплоте кристаллизации.

    Это ясно видно из графика зависимости температуры охлаждающейся жидкости от времени, изображаемого на рис. 179 (кривая а). Участок 1 кривой а дает ход монотонного понижения температуры жидкости вследствие отвода тепла от нее. Горизонтальный участок 2 показывает, что при определенном значении температуры ее понижение прекращается, несмотря на то, что отвод тепла продолжается. Через некоторое время температура снова начинает понижаться (участок 3). Температура, соответствующая участку 2, это и есть температура кристаллизации. Выделяющееся при кристаллизации тепло компенсирует отвод тепла от вещества и поэтому понижение температуры временно прекращается. После окончания процесса кристаллизации температура, теперь уже твердого тела, вновь начинает понижаться.

    Такой ход графика понижения температуры характерен для кристаллических тел. При охлаждении жидкостей, не кристаллизующихся (аморфных веществ), скрытая теплота не выделяется и график охлаждения представляет собой монотонную кривую без остановки охлаждения.

    При обратном процессе перехода вещества из твердого состояния в жидкое (плавление) на кривой нагревания также наблюдается остановка в повышении температуры, вследствие поглощения скрытой теплоты плавления - теплоты, за счет которой происходит разрушение кристаллической решетки (кривая на рис. 179).

    Для начала кристаллизации необходимо присутствие центра или центров кристаллизации. Такими центрами могли бы служить случайные скопления частиц жидкости, прилипших друг к другу, к которым могли бы присоединяться всё новые и новые частицы, пока вся жидкость не обратилась бы в твердое тело. Однако образование таких скоплений в самой жидкости затрудняется тепловыми движениями, которые их разрушают еще до того, как они успевают приобрести сколько-нибудь заметные размеры. Кристаллизация существенно облегчается, если в жидкости с самого начала присутствуют достаточно большие твердые частицы в виде пылинок и тел, которые становятся центрами кристаллизации.

    Образование центров кристаллизации в самой жидкости облегчается, конечно, с понижениемтемпературы. Поэтому кристаллизация чистой жидкости, лишенной посторонних образований,

    начинается обычно при температуре несколько более низкои, чем истинная температура кристаллизации. В обычных условиях в кристаллизующейся жидкости имеется много центров кристаллизации, так что в жидкости образуется множество кристалликов, срастающихся вместе, и затвердевшее вещество оказывается поликристаллическим.

    Только в особых условиях, которые обычно трудно обеспечить, можно получить одиночный кристалл - монокристалл, вырастающий из единственного центра кристаллизации. Если при этом для всех направлений обеспечены одинаковые условия накопления частиц, то кристалл получается правильно ограненным соответственно его свойствам симметрии.

    Переход жидкость - твердое тело, так же как и обратное превращение, является фазовым переходом, так как жидкое и твердое состояния можно рассматривать как две фазы вещества. Обе фазы при температуре кристаллизации (плавления) могут соприкасаться друг с другом, находясь в равновесии (лед, например, может плавать в воде, не плавясь), так же как могут находиться в равновесии жидкость и ее насыщенный пар.

    Подобно тому как температура кипения зависит от давления, температура кристаллизации (и равная ей температура плавления) также зависит от давления, обычно возрастая с ростом давления. Растет она потому, что внешнее давление сближает атомы между собой, а для разрушения кристаллической решетки при плавлении атомы нужно отдалить друг от друга: при большем давлении для этого требуется большая энергия тепловых движений, т. е. более высокая температура.

    На рис. 180 показана кривая зависимости температуры плавления (кристаллизации) от давления. Сплошная кривая делит всю область на две части. Область влево от кривой соответствует твердому состоянию, а область справа от кривой - жидкому состоянию. Любая же точка, лежащая на самой кривой плавления, соответствует равновесию твердой и жидкой фаз: при этих давлениях и температурах вещество в жидком и твердом состояниях находится в равновесии, соприкасаясь друг с другом, и при этом жидкость не твердеет, а твердое тело не плавится.

    Пунктиром на рис. 180 показана кривая плавления для тех немногих веществ (висмут, сурьма, лед, германий), у которых при отвердевании объем не уменьшается, а увеличивается. У таких

    веществ, естественно, температура плавления с повышением давления понижается.

    Изменение температуры плавления связано с изменением давления соотношением Клапейрона - Клаузиуса:

    Здесь - температура плавления (кристаллизации), и - соответственно молярные объемы жидкой и твердой фаз и молярная теплота плавления.

    Эта формула справедлива и для других фазовых переходов. В частности, для случая испарения и конденсации формула Клапейрона-Клаузиуса была выведена в гл. VII [см. (105.6)].

    Из формулы Клапейрона - Клаузиуса видно, что знак изменения температуры плавления с изменением давления определяется тем, какая из двух величин, или больше. Крутизна кривой зависит также от величины скрытой теплоты перехода чем меньше тем меньше изменяется температура плавления с давлением. В табл. 20 приведены значения удельной (т. е. отнесенной к единице массы) теплоты плавления для некоторых веществ.

    Таблица 20 (см. скан) Удельная теплота плавления для некоторых веществ

    Уравнение Клапейрона - Клаузиуса может быть написано и в таком виде:

    Это уравнение показывает, как изменяется давление, под которым находятся обе равновесные фазы, при изменении температуры.

    Твердое тело может образоваться не только путем кристаллизации жидкости, но и конденсацией газа (пара) в кристалл, минуя жидкую фазу. При этом также выделяется скрытая теплота перехода, которая, однако, всегда больше скрытой теплоты плавления. Ведь образование твердого тела при определенных температуре и давлении может произойти как непосредственно из газообразного состояния, так и путем предварительного ожижения, В обоих

    случаях начальное и конечное состояния одинаковы. Одинакова, значит, и разность энергий этих состояний. Между тем во втором случае выделяется, во-первых, скрытая теплота конденсации при переходе из газообразного в жидкое состояние и, во-вторых, скрытая теплота кристаллизации при переходе из жидкого в твердое состояние. Отсюда следует, что скрытая теплота при непосредственном образовании твердого тела из газообразной фазы должна быть равна сумме теплоты конденсации и кристаллизации из жидкости. Это относится только к теплотам, измеренным при температуре плавления. При более низких температурах теплота конденсации из газа возрастает.

    Обратный процесс испарения твердого тела называется обычно возгонкой или сублимацией. Испаряющиеся частицы твердого тела образуют над ним пар совершенно так же, как это происходит при испарении жидкости. При определенных давлении и температуре пар и твердое тело могут находиться в равновесии. Пар, находящийся в равновесии с твердым телом, также называется насыщенным паром. Как и в случае жидкости, упругость насыщенного пара над твердым телом зависит от температуры, быстро уменьшаясь с понижением температуры, так что у многих твердых тел при обычных температурах упругость насыщенного пара ничтожно мала.

    На рис. 181 показан вид кривой зависимости упругости насыщенного пара от температуры. Эта кривая является линией равновесия твердой и газообразной фаз. Область слева от кривой соответствует твердому состоянию, справа от нее - газообразному. Возгонка, так же как и плавление, связана с разрушением решетки и требует затраты необходимой для этого энергии. Эта энергия проявляется как скрытая теплота возгонки (сублимации), равная, разумеется, скрытой теплоте конденсации.. Теплота возгонки равна поэтому сумме теплот плавления и парообразования.

    
    Top