Строение жидкости и газа. Open Library - открытая библиотека учебной информации Молекулярная структура жидкости

В жидком состоянии

Газообразное состояние

Гипотеза сплошности .

Раздел механики, гидромеханикой.

гидравликой.

В гидравлике изучают

Закон Архимеда.

Закон Архимеда формулируется следующим образом : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме тела . Сила называется силой Архимеда :

где - плотность жидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Таким образом, согласно методу Эйлера поток в целом в данный момент времени оказывается представленным векторным полем скоростей, относящимся к неподвижным точкам пространства. В общем случае скорость будет функцией от координат и времени.

u = f (x, y, z, t) (1)

Для введения понятия скорости в гидравлике учитывается перемещение частиц только за бесконечно малый отрезок времени. Если взять точку 1 в движущейся жидкости, то вектор скорости будет u 1.

Если по направлению этого вектора выбрать точку 2, то в ней уже вектор скорости будет u2. Аналогично можно получить векторы скоростей u3, u4, и т.д.

Совокупность этих векторов представляет собой ломанную линию, которая при уменьшении расстояния между точками до бесконечно малых величин превращается в кривую, так называемую линию тока.

Силы внутри жидкости

Силы массовые. По-другому эти силы называют силами, распределенными по массе: на каждую частицу с массой M = W действует сила F , в зависимости от ее массы.

Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность w , которая может находиться как на поверхности, так и внутри жидкости; на поверхности, произвольно проведенной внутри жидкости.

Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.

В покоящейся жидкости возможен лишь один вид напряжений – напряжения сжатия, т. е. гидростатическое давление .
Гидростатическое давление в жидкости имеет следующие два свойства:

  1. На внешней поверхности гидростатическое давление всегда направлено по нормали, внутрь рассматриваемого объема жидкости .
    Это свойство непосредственно вытекает из определения давления как напряжения от нормальной сжимающей силы. Под внешней поверхностью жидкости понимают не только поверхности раздела жидкости с газообразной средой или твердыми стенками, но и поверхности элементарных объемов, мысленно выделяемых из общего объема жидкости.
  2. В любой точке внутри жидкости гидростатическое давление по всем направлениям одинаково, т. е. давление не зависит от угла наклона площадки, на которую оно действует в данной точке . Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме прямоугольного тетраэдра с ребрами, параллельными координатным осям и соответственно равными dx, dy и dz (рис. 2.1).

Виды давления

Абсолютное- величина измеренная относительно давления равного абсолютному нулю.

Избыточное- это величина на которую измеряемое давлением больше барометрического

Вакуумметрическое- это величина на которую измеряемое давление меньше барометрического

Атмосферное (барометрическое)

9. Равновесие жидкости под действием силы тяжести. Распределение давления по глубине.

10. Измерение давления высотой столба жидкости. Приборы для измерения давления.

Классификация трубопроводов

В зависимости от вида прокладки и/или перехода (типа опирания)

  • наземный - укладывается выше уровня земли на отдельных опорах;
  • надземный ;
    • арочный ;
    • висячий ;
    • балочный;
  • подземный - укладывается непосредственно на грунт в траншеях, канавах, насыпях, штольнях, на опорах в тоннелях и дюкерах ;
  • подводный - укладывается по дну водоёмов, рек или в траншеях, прорытых на дне ;
  • плавающий - укладывается на поверхности болот, а также озёр, рек и др. водоёмов с креплениями к поплавкам (чаще пластмассовым) .

В зависимости от транспортируемой среды

Трубопровод на акведуке для рассола в Австрии. Акведук построен в конце XVIII века

  • Аммиакопровод - предназначается для транспортировки аммиака. В России и на Украине функционирует экспортный магистральный аммиакопровод Тольятти - Одесса.
  • Водопровод - предназначен для обеспечения водой населения, промышленных предприятий, транспорта . В зависимости от видов потребления бытовых и промышленных нужд трубопроводы водоснабжения различают по органолептическим свойствам и пригодности для питья: хозяйственно-питьевые, производственные, противопожарные, поливные .
  • Воздухопровод - часто создается в рамках промышленного предприятия для обеспечения производства сжатым воздухом [источник не указан 1629 дней ] .
  • Газопровод - предназначен для транспортировки попутного нефтяного, природного и искусственного газа . Стратегические газопроводы предназначаются для передачи на дальние расстояния больших объёмов газа - на экспорт к предприятиям, осуществляющим газовый синтез [источник не указан 1629 дней ] .
  • Нефтепровод - предназначен для транспортировки сырой нефти. Нефть при этом подвергается подогреву, препятствующему затвердеванию входящих в её состав парафинов [источник не указан 1629 дней ] .
  • Нефтепродуктопровод - предназначен для транспортировки нефтепродуктов, в том числе бензина и керосина, полученных в результате крекинга. Осуществляется до предприятий, предназначенных для производства нефтепродуктов более высокой переработки. Подобные трубопроводы, чаще всего, применяются в пределах одного предприятия. Для транспортировки нефтепродуктов на большое расстояние, используются специальные автомобильные либо железнодорожные цистерны.
  • Мазутопровод - трубопровод, осуществляющий транспортировку тяжёлых нефтепродуктов, отходов крекинга. Такие продукты могут использоваться в качестве топочного мазута, а также для переработки в дизельное топливо или даже для дальнейшего отделения легких углеводородов [источник не указан 1629 дней ] .
  • Паропровод - технологический трубопровод, предназначенный для передачи пара под давлением, используемого для отопления или работы сторонних механизмов [источник не указан 1629 дней ] .
  • Конденсатопровод - технологический трубопровод, предназначенный для сбора конденсата [источник не указан 321 день ] .
  • Продуктопровод - в общем смысле, трубопровод, предназначенный для транспортировки искусственно синтезированных веществ (в том числе, перечисленных выше), чаще всего - продуктов нефтяного синтеза. В частном случае может означать систему, предназначенную для доставки по трубам любых пригодных для этого объектов [источник не указан 1629 дней ] .
  • Массопровод - предназначен для транспортировки гидроторфа на торфоразработках, различных сыпучих материалов на складах и промышленных предприятиях, золоудалители теплоэлектростанций и т. п.
  • Этиленопровод - инфраструктура, предназначенная для транспортировки по трубам специфического синтезированного промышленного сырья - этилена [источник не указан 1629 дней ] .
  • Теплопровод (см. тепловая сеть) - предназначен для передачи теплоносителя (вода, водяной пар) от источника тепловой энергии в жилые дома, общественные здания и промышленные предприятия . По расположению относительно зданий и сооружений разделяются на наружные и внутренние . В зависимости от длины, диаметра и количества передаваемой энергии подразделяются на: магистральные (от источника энергии до микрорайона или предприятия), распределительные (от магистральных до трубопроводов, идущих к отдельным зданиям), ответвления (от распределительных трубопроводов до узлов присоединения местных потребителей тепла) .

В зависимости от назначения

  • Магистральные трубопроводы - трубопроводы и отводы от них диаметром до 1420 мм (включительно); единый производственно-технологический комплекс, включающий в себя здания, сооружения, его линейную часть, в том числе объекты, используемые для обеспечения транспортировки, хранения и (или) перевалки на автомобильный, железнодорожный и водный виды транспорта жидких или газообразных углеводородов, измерения жидких (нефть, нефтепродукты, сжиженные углеводородные газы, газовый конденсат, широкая фракция легких углеводородов, их смеси) или газообразных (газ) углеводородов, соответствующих требованиям законодательства .
  • Трубопроводы специального назначения - дюкеры и тоннели для прокладки внутри них (при пересечении различных преград) трубопроводов, теплосетей, электрокабелей и т. д.; сюда же относятся различные самонесущие и ограждающие функции и другие специальные трубопроводы .
  • Пневматическая почта - использование воздуха под давлением для перемещения по трубам физических объектов - чаще всего, стандартизированных капсул с объектами небольшой массы и объёма. Используется в рамках одного или близко расположенных зданий, использует механические способы маршрутизации [источник не указан 1629 дней ] .
  • Канализация - предназначена для отведения загрязнённых промышленных и бытовых стоков через систему трубопроводов с очисткой и обезвреживанием перед утилизацией или сбросом в водоём . По назначению канализационные системы разделяют: бытовые, производственные, водостоки; по расположению: внутренняя и наружная; по типу: напорные (сброс под давлением) и безнапорные (сброс самотёком) .
    • Водосток (дренаж)
  • Водовыпуск

26. Система уравнений и задачи гидравлического расчета трубопроводов

Структура и особенности жидкого и газообразного состояния. Гипотеза сплошности. Предмет и методы гидравлики.

В жидком состоянии вещество сохраняет объём, но не сохраняет форму. Это означает, что жидкость может занимать только часть объёма сосуда, но также может свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела). Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твёрдое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло), выше - в газообразное (происходит испарение). Границы этого интервала зависят от давления. Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза). Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей. Как и газ, жидкости тоже в основном изотропные. Однако, существуют жидкости с анизотропными свойствами - жидкие кристаллы. Кроме изотропной, так называемой нормальной фазы, эти вещества, мезогены, имеют одну или несколько упорядоченных термодинамических фаз, которые называют мезофазы. Составление в мезофазы происходит благодаря особой форме молекул жидких кристаллов. Обычно это длинные узкие молекулы, которым выгодно укладываться так, чтобы их оси совпадали.

Газообразное состояние характерно тем, что оно не сохраняет ни форму, ни объём. Газ заполняет всё доступное пространство и проникает в любые его закоулки. Это состояние, свойственное веществам с малой плотностью. Переход из жидкого в газообразное состояние называют испарением, а противоположный ему переход из газообразного состояния в жидкое - конденсацией. Переход из твёрдого состояния в газообразное, минуя жидкое, называют сублимацией или возгонкой. С микроскопической точки зрения газ - это состояние вещества, в котором его отдельные молекулы взаимодействуют слабо и движутся хаотически. Взаимодействие между ними сводится к спорадическим столкновениям. Кинетическая энергия молекул превышает потенциальную. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда). По химическим свойствам газы и их смеси весьма разнообразны - от малоактивных инертных газов до взрывчатых газовых смесей. Понятие «газ» иногда распространяют не только на совокупности атомов и молекул, но и на совокупности других частиц - фотонов, электронов, броуновских частиц, а также плазму. Некоторые вещества не имеют газообразного состояния. Это вещества со сложным химическим строением, которые при повышении температуры распадаются вследствие химических реакций раньше, чем становятся газом. Не существует различных газообразных термодинамических фаз одного вещества. Газам свойственна изотропия, то есть независимость характеристик от направления. В привычных для человека земных условиях, газ имеет одинаковую плотность в любой точке, однако это не является универсальным законом, во внешних полях, например в поле тяготения Земли, или в условиях различных температур плотность газа может меняться от точки к точке. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром.

Гипотеза сплошности . Жидкость рассматривается как деформиру­емая система материальных частиц, непрерывно заполняющих прост­ранство, в котором она движется.

Жидкая частица представляет собой бесконечно малый объем, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3-10 13 молекул. Частица жидкости полага­ется достаточно малой по сравнению с размерами области, занятой движущейся жидкостью.

При таком предположении жидкость в целом рассматривается как континуум - сплошная среда, непрерывно заполняющая пространство, т.е. принимается, что в жидкости нет пустот или разрывов, все характе­ристики жидкости являются непрерывными функциями, имеющими непрерывные частные производные по всем своим аргументам. Сплош­ная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости.

Правомерность применения модели жидкости - сплошная среда подтверждена всей практикой гидравлики.

Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие между жидкостью и обтекаемыми ею телами или ограничивающими ее поверхностями, называется гидромеханикой.

Прикладную часть гидромеханики, для которой характерен определенный круг технических вопросов, задач и методы их разрешения, называют гидравликой. Обычно гидравлику определяют как науку о законах равновесия и движения жидкостей и о способах приложения этих законов для решения практических задач.

В гидравлике рассматриваются главным образом потоки жидкости, ограниченные и направленные твердыми стенками, т. е. внутренние течения, в отличие от аэрогидромеханики, которая изучает внешнее обтекание тел сплошной средой.

В гидравлике изучают движения главным образом капельных жидкостей, при этом в подавляющем большинстве случаев они рассматриваются как несжимаемые. Внутренние течения газа относятся к области гидравлики лишь в тех случаях, когда скорости их течения значительно меньше скорости звука и, следовательно, сжимаемостью газа можно пренебречь. Это, например течения воздуха в вентиляционных системах. В дальнейшем под термином “жидкость” мы будем понимать капельную жидкость, а также газ, когда его можно считать несжимаемым.

Метод, применяемый в современной гидравлике при исследовании движения, заключается в следующем. Создается физическая модель процесса, устанавливающая его качественные характеристики и определяющие факторы. На основании физической модели и потребной для практики точности формулируется математическая модель. Те явления, которые не поддаются теоретическому анализу, исследуют экспериментальным путем, а результаты представляют в виде эмпирических соотношений. Математическую модель формализуют в виде алгоритмов и программ, для получения решения с применением средств вычислительной техники. Полученные решения анализируются, сопоставляются с имеющимися экспериментальными данными, и уточняются путем корректировки математической модели и способа ее решения.

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газ. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис. 10). Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в сосуде молекул газа.

Газы легко сжимаются, так как при сжатии газа уменьшается лишь среднее расстояние между молекулами, но молекулы не «сдавливают» друг друга (рис. 11).


Молекулы с огромными скоростями – сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам.
Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.
Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости . В жидкостям молекулы расположены почти вплотную друг к другу (рис. 12). Поэтому молекула в жидкости ведет себя иначе, чем в газе. Зажатая, как в клетке, другими молекулами, она совершает «бег на месте» (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает «прыжок», прорываясь сквозь «прутья клетки», но тут же попадает в новую «клетку», образованную новыми соседями. Время «оседлой жизни» молекулы воды, т. е. время колебаний около одного определенного положения равновесия, при комнатной температуре равно в среднем 10 –11 с. Время же одного колебания значительно меньше (10 –12 – 10 –13 с). С повышением температуры время «оседлой жизни» молекул уменьшается. Характер молекулярного движения а жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей.


Френкель Яков Ильич (1894 – 1952) – выдающийся советский физик-теоретик, внесший значительный вклад в самые различные области физики. Я. И. Френкель – автор современной теории жидкого состояния вещества. Им заложены основы теории ферромагнетизма. Широко известны работы Я. И. Френкеля по атмосферному электричеству и происхождению магнитного поля Земли. Первая количественная теория деления ядер урана создана Я. И. Френкелем.

Молекулы жидкости находятся непосредственно друг возле друга. Поэтому при попытке изменить объем жидкости даже на малую величину начинается деформация самих молекул (рис. 13). А для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей.

Жидкости, как известно, текучи, т. е. не сохраняют своей формы. Объясняется это следующим. Если жидкость не течет, то перескоки молекул из одного «оседлого» положения в другое происходят с одинаковой частотой но всем направлениям (рис. 12). Внешняя сила заметно не изменяет числа перескоков молекул в секунду, но перескоки молекул из одного «оседлого» положения в другое при этом происходят преимущественно в направлении действия внешней силы (рис. 14). Вот почему жидкость течет и принимает форму сосуда.
Твердые тела. Атомы или молекулы твердых тел в отличие от жидкостей колеблются около определенных положений равновесия. Правда, иногда молекулы изменяют положение равновесия, но происходит это крайне редко. Вот почему твердые тела сохраняют не только объем, но и форму.


Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой, отдельные члены которой беспокойно толкутся на месте, а твердое тело подобно стройной когорте, члены которой хотя и не стоят по стойке «смирно» (вследствие теплового движения), но выдерживают между собой в среднем определенные интервалы. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической . На рисунках 15 и 16 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к геометрически правильным внешним формам. На рисунке 17 показаны якутские алмазы.


Качественное объяснение основных свойств вещества на основе молекулярно-кинетической теории, как вы видели, не является особенно сложным. Однако теория, устанавливающая количественные соотношения между измеряемыми на опыте величинами (давлением, температурой и др.) и свойствами самих молекул, их числом и скоростью движения, весьма сложна. Мы ограничимся рассмотрением теории газов.

1. Приведите доказательства существования теплового движения молекул. 2. Почему броуновское движение заметно лишь у частиц малой массы? 3. Какова природа молекулярных сил? 4. Как силы взаимодействия между молекулами зависят от расстояния между ними? 5. Почему два свинцовых бруска с гладкими чистыми срезами слипаются, если их прижать друг к другу? 6. В чем состоит различие теплового движения молекул газов, жидкостей и твердых тел?

Жидкости и газы. Гипотеза сплошности.

Основные физические характеристики жидкостей и газов.

ЛЕКЦИЯ 3

Предметом изучения механики жидкости и газа является физическое тело, у которого относительное положение его элементов изменяется на значительную величину при приложении достаточно малых сил соответствующего направления. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, основным свойством жидкого тела (или просто жидкости) является текучесть. Свойством текучести обладают как капельные жидкости (собственно жидкости, такие, к примеру, как вода, бензин, технические масла), так и газы (воздух, азот, водород, углекислый газ). Существенное различие в поведении жидкостей и газов, объясняемое с точки зрения молекулярного строения, будет определяться наличием у капельной жидкости свободной поверхности, граничащей с газом, наличие поверхностного натяжения, возможность фазового перехода и т.д.

Все материальные тела, независимо от их агрегатного состояния: твердого, жидкого или газообразного, обладают внутренней молекулярной (атомной) структурой с характерным внутренним тепловым, микроскопическим движением молекул. Учитывая зависимость отколичественного соотношения между кинœетической энергией движения молекул и потенциальной энергией межмолекулярного силового взаимодействия возникают различные молекулярные структуры и разновидности внутреннего движения молекул.

В твердых телах основное значение имеет молекулярная энергия взаимодействия молекул, вследствие чего под действием сил сцепления молекулы располагаются в правильные кристаллические решетки с положениями устойчивого равновесия в узлах этой решетки. Тепловые движения в твердом телœе представляют собой колебания молекул относительно узлов решетки с частотой порядка 10 12 Гц и амплитудой, пропорциональной расстоянию между узлами решетки.

В противоположность твердому телу, в газах отсутствуют силы сцепления между молекулами. Молекулы газа совершают беспорядочные движения, причем взаимодействие их сводится только к столкновениям. В промежутках между столкновениями взаимодействием между молекулами можно пренебречь, что соответствует малости потенциальной энергии силового взаимодействия молекул по сравнению с кинœетической энергией их хаотического движения. Среднее расстояние между двумя последовательными столкновениями молекул определяет длину свободного пробега. Средняя скорость теплового движения молекул сравнима со скоростью распространения малых возмущений (скоростью звука) в данном состоянии газа.

Жидкие тела по своей молекулярной структуре и тепловому движению молекул занимают промежуточное состояние между твердыми и газообразными телами. По существующим воззрениям вокруг некоторой, центральной , молекулы группируются сосœедние молекулы, совершающие малые колебания с частотой, близкой к частоте колебаний молекул в решетке твердого тела и амплитудой порядка среднего расстояния между молекулами. Центральная молекула либо (при покое жидкости) остается неподвижной, либо мигрирует со скоростью, по значению и направлению совпадающей со средней скоростью макроскопического движения жидкости. В жидкости потенциальная энергия взаимодействия молекул сравнима по порядку с кинœетической энергией их теплового движения. Доказательством наличия колебаний молекул в жидкостях служит «броуновское движение» мельчайших твердых частиц, внесенных в жидкость. Колебания этих частиц легко наблюдаются в поле микроскопа и могут рассматриваться как результат соударения твердых частиц с молекулами жидкости. Наличие в жидкостях межмолекулярного взаимодействия обусловливает существование поверхностного натяжения жидкости на ее границе с любой другой средой, что заставляет ее принять такую форму, при которой ее поверхность минимальна. Небольшие объемы жидкости обычно имеют форму шаровидной капли. В силу этого жидкости в гидравлике называют капельными .

Следует отметить, что граница между твердыми и жидкими телами не всœегда четко очерчена. Так, при воздействии больших сил на капельную жидкость (к примеру, на жидкую струю), при малом времени взаимодействия последняя приобретает свойства, близкие к свойствам хрупкого твердого тела. Струя жидкости при больших давлениях перед отверстием обладает свойствами, близкими к свойствам твердого тела. Так, при давлениях больших 10 8 Па водяная струя режет стальную пластину; при давлении порядка 5·10 7 Па – режет гранит, при давлениях 1,5·10 7 - 2·10 7 Па – разрушает каменные угли. Давления (1,5 – 2)·10 6 Па достаточно для разрушения различных грунтов.

При определœенных условиях граница между жидкими и газообразными телами также может отсутствовать. Газы заполняют весь предоставленный им объем, их плотность может меняться в широких пределах в зависимости от приложенных сил. Жидкости, заполняя сосуд большего объема, чем объем жидкости, образуют свободную поверхность – границу раздела между жидкостью и газом. В обычных условиях объем жидкости мало зависит от приложенных к ней сил. Вблизи критического состояния разница между жидкостью и газом становится малозаметной. В последнее время появилось понятие флюидного состояния, когда частицы жидкости с размерами в несколько нанометров достаточно равномерно перемешаны со своим паром. В этом случае не наблюдается визуального различия между жидкостью и паром.

Пар отличается от газа тем, что его состояние при движении близко к состоянию насыщения. По этой причине он может при определœенных условиях частично конденсироваться и образовывать двухфазную среду. При быстром расширении процесс конденсации запаздывает, а затем при достижении определœенного переохлаждения происходит лавинообразно. В этом случае законы течения пара могут существенно отличаться от законов течения жидкостей и газов.

Свойства твердых тел, жидкостей и газов обусловлены их различным молекулярным строением. При этом основной гипотезой механики жидкости и газа является гипотеза сплошной среды, в соответствии с которой, жидкость представляется непрерывно распределœенным веществом (континуумом), без пустот заполняющим пространство.

Вследствие слабых связей между молекулами жидкостей и газов (потому то они и текучи) к их поверхностям не может быть приложена сосредоточенная сила, а только распределœенная нагрузка. Направленное движение жидкости слагается из движения хаотически перемещающихся во всœех направлениях относительно друг друга огромного числа молекул. В механике жидкости и газа, которая изучает их направленное движение, полагается непрерывным распределœение всœех характеристик жидкости в рассматриваемом пространстве. Молекулярная структура принимается во внимание только при математическом описании физических характеристик жидкости или газа, что и был сделано при рассмотрении процессов переноса в газах.

Модель сплошной среды весьма полезна при изучении ее движения, так как позволяет использовать хорошо развитый математический аппарат непрерывных функций.

Количественно пределы применимости математического аппарата механики сплошной среды для газа устанавливаются значением критерия Кнудсена – отношением средней длины свободного пробега молекул газа l к характерному размеру течения L

В случае если Kn< 0,01 то течение газа можно рассматривать как течение сплошной среды. При обтекании твердой поверхности сплошной средой ее молекулы прилипают к ней (гипотеза Прандтля о прилипании) и в связи с этим скорость жидкости на поверхности твердых тел всœегда равна скорости этой поверхности, а температура жидкости на стенке равна температуре стенки.

В случае если Kn> 0,01, то рассматривается движение разреженного газа с использованием математического аппарата молекулярно- кинœетической теории.

В машиностроении гипотеза сплошной среды может не выполняться при расчете течения жидкости или газа в узких зазорах. Молекулы имеют размеры порядка 10 -10 м; при зазорах порядка 10 -9 м, характерных для нанотехнологии, могут наблюдаться существенные отклонения расчетных данных, полученных посредством обычных уравнений динамики жидкости

Строение газов, жидкостей и твердых тел. Особенности структуры растворов. Понятие о «реактивном поле»
Теория строения жидкостей: сравнение со структурой газов и твердых тел Строение (структура) жидкостей. Структура жидкостей является в настоящее время предметом пристального изучения физико-химиков. Для исследований в этом направлении используются самые современные методы, включая спектральные (ИК, ЯМР, рассеивание света различных длин волн), рассеивание ренгеновских лучей, квантово-механических и статистических методов расчета и т.д. Теория жидкостей разработана гораздо хуже, чем газов, поскольку свойства жидкостей зависят от геометрии и полярности взаимно близко расположенных молекул. Кроме того, отсутствие определенной структуры жидкостей затрудняет их формализованное описание – в большинстве учебников жидкостям уделено гораздо меньше места, чем газам и твердым кристаллическим веществам. Каковы же особенности каждого из трех агрегатных состояний вещества: твердого тела, жидкости и газа. (таблица)
1) Твердое: тело сохраненяет объем и форму
2) Жидкость сохраняют объем, но легко меняют форму.
3) Газ не имеют ни формы ни объема.

Эти состояния одного и того же вещества различаются не сортностью молекул (она одинакова), а тем как молекулы расположены и движутся.
1) В газах расстояние между молекулами много больше размеров самих молекул
2) Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объем.
3) Частицы твердых тел расположены в определенном порядке. Каждая из частиц движется около определенной точки в кристаллической решетке, подобно маятнику часов, т. е. колеблется.
При понижении температуры жидкости затвердевают, а при повышении выше температуры кипения переходят в газообразное состояние. Уже этот факт указывает на то, что жидкости занимают промежуточное положение между газами и твердыми телами, отличаясь от того и другого. Однако жидкость имеет черты сходства с каждым из этих состояний.
Существует такая температура, при которой граница между газом и жидкостью полностью исчезает. Это, так называемая, критическая точка. Для каждого газа известна температура, выше которой он не может быть жидким ни при каком давлении; при этой критической температуре исчезает граница (мениск) между жидкостью и ее насыщенным паром. Существование критической температуры ("температуры абсолютного кипения") установил Д.И.Менделеев в 1860 г. Второе свойство, объединяющее жидкости и газы – это изотропность. Т.е., на первый взгляд можно предположить, что жидкости ближе к газам, чем к кристаллам. Так же как и газы, жидкости изотропны, т.е. их свойства во всех направлениях одинаковы. Кристаллы, напротив, анизотропны: показатель преломления, сжимаемость, прочность и многие другие свойства кристаллов в разных направлениях оказываются различными. Твердые кристаллические вещества обладают упорядоченной структурой с повторяющимися элементами, что позволяет исследовать их методом дифракции рентгеновских лучей (метод рентгеноструктурного анализа, используется с 1912 г.).

Что общего у жидкостей и газов?
А) Изотропность. Свойства жидкости, как и у газов, одинаковы во всех направлениях, т.е. изотропны, в отличие от кристаллов, которые анизотропны.
Б) Жидкости, подобно газам, не имеют определенной формы и принимают форму сосуда (низкая вязкость и высокая текучесть).
Молекулы и жидкости и газа совершают достаточно свободные перемещения, сталкиваясь друг с другом. Раньше считалось, что в пределах объема, занимаемого жидкостью, любое расстояние, превышающее сумму их радиусов, принималось равновероятным, т.е. тенденция к упорядоченному расположении молекул отрицалось. Тем самым, жидкости и газы в известной степени противопоставлялись кристаллам.
По мере развития исследований все большее число фактов указывало на наличие сходства между строением жидкостей и твердых тел. Например, значения теплоемкостей и коэффициентов сжимаемости, особенно вблизи температуры плавления, практически совпадают друг с другом, тогда как эти величины для жидкости и газа резко отличаются.
Уже из этого примера можно заключить, что картина теплового движения в жидкостях при температуре близкой к температуре затвердевания, напоминает собой тепловое движение в твердых телах, а не в газах. Наряду с этим, можно отметить и такие существенные различия между газообразным и жидким состоянием вещества. В газах молекулы распределены по пространству совершенно хаотично, т.е. последний считается примером бесструктурного образования. Жидкость все же имеет определенную структуру. Экспериментально это подтверждается дифракцией ренгеновских лучей, которая показывает, по крайней мере, один четкий максимум. Структура жидкости – это способ распределения ее молекул в пространстве. Таблица иллюстрирует сходства и различия газового и жидкого состояний.
Газовая фаза Жидкая фаза
1. Расстояние между молекулами l обычно (для невысоких давлений) много больше радиуса молекулы r: l  r ; практически весь объем V, занятый газом, есть свободный обьем. В жидкой фазе, наоборот, l 2. Средняя кинетическая энергия частиц, равная 3/2kT , больше потенциальной энергии U их межмолекулярного взаимодействия Потенциальная энергия взаимодействия молекул больше средней кинетической энергии их движения: U3/2 kT
3. Частицы сталкиваются при их поступательном движении, фактор частоты столкновений зависит от массы частиц, их размеров и температуры Каждая частица совершает колебательное движение в клетке, которую создают окружающие ее молекулы. Амплитуда колебания a зависит от свободного обьема, a  (Vf/ L)1/3
4. Диффузия частиц происходит в результате их поступательного движения, коэффициент диффузии D  0,1 - 1 см2/c (p  105 Па) и зависит от давления газа
(D  p-1) Диффузия происходит в результате перескока частицы из одной клетки в другую с энергией активации ED,
D  e-ED/RT в невязких жидкостях
D  0,3 - 3 см2/сут.
5. Частица свободно вращается, частота вращения r определяется только моментами инерции частицы и температурой, частота вращений r T1/2 Вращение заторможено стенками клетки, поворот частицы сопровождается преодолением потенциального барьера Er, который зависит от сил межмолекулярного взаимодействия, vr  e-Er /RT
Однако, жидкое состояние по ряду важных показателей близко к твердому (квазикристалличность). Накопление экспериментальных фактов указывало на то, что у жидкостей и кристаллов много общего. Физико-химические исследования индивидуальных жидкостей показали, что почти все они обладают некоторыми элементами кристаллической структуры.
Во-первых, межмолекулярные расстояния в жидкости близки к таковым в твердом теле. Это доказывается тем, что при плавлении последнего объем вещества изменяется незначительно (обычно он увеличивается не более чем на 10%). Во-вторых, энергия межмолекулярного взаимодействия в жидкости и в твердом теле отличается незначительно. Это следует из того факта, что теплота плавления много меньше теплоты испарения. Например, для воды Hпл= 6 кДж/моль, а Hисп= 45 кДж/моль; для бензола Hпл= 11 кДж/моль, а Hисп = 48 кДж/моль.
В-третьих, теплоемкость вещества при плавлении меняется очень слабо, т.е. она близка для этих обоих состояний. Отсюда следует, что характер движения частиц в жидкости близок к таковому в твердом теле. В-четвертых, жидкость, как и твердое тело, выдерживает без разрыва большие растягивающие усилия.
Различие между жидкостью и твердым телом заключается в текучести: твердое тело сохраняет свою форму, жидкость даже под влиянием небольшого усилия легко ее меняет. Эти свойства вытекают из таких особенностей строения жидкости, как сильное межмолекулярное взаимодействие, ближний порядок в расположении молекул и способность молекул сравнительно быстро менять свое положение. При нагревании жидкости от температуры замерзания до температуры кипения ее свойства плавно меняются, с нагреванием постепенно усиливаются ее черты сходства с газом.
Каждый из нас без труда припомнит немало веществ, которые он считает жидкостями. Однако дать точное определение этого состояния вещества не так-то просто, поскольку жидкости обладают такими физическими свойствами, что в одних отношениях они напоминают твердые тела, а в других – газы. Наиболее ярко сходство между жидкостями и твердыми телами проявляется у стеклообразных материалов. Их переход от твердого состояния к жидкому при повышении температуры происходит постепенно, а не как ярко выраженная температура плавления, они просто становятся все более мягкими, так что нельзя указать, в каком температурном интервале их следует назвать твердыми телами, а в каком – жидкостями. Можно лишь сказать, что вязкость стеклообразного вещества в жидком состоянии меньше, чем в твердом. Твердые стекла поэтому часто называют переохлажденной жидкостью. По-видимому, наиболее характерным свойством жидкостей, отличающим их от твердых тел, является низкая вязкость, т.е. высокая текучесть. Благодаря ей они принимают форму сосуда, в который налиты. На молекулярном уровне высокая текучесть означает относительно большую свободу частиц жидкости. В этом жидкости напоминают газы, хотя силы межмолекулярного взаимодействия жидкостей больше, молекулы расположены теснее и более ограничены в своем движении.
К сказанному можно подойти и иначе – с точки зрения представления о дальнем и ближнем порядке. Дальний порядок существует в кристаллических твердых телах, атомы которых расположены строго упорядоченно, образуя трехмерные структуры, которые можно получить многократным повторением элементарной ячейки. В жидкости и стекле дальний порядок отсутствует. Это, однако, не означает, что они вообще не упорядочены. Число ближайших соседей у всех атомов практически одинаково, но расположение атомов по мере их удаления от какой-либо выделенной позиции становится все более и более хаотичным. Таким образом, упорядоченность существует лишь на малых расстояниях, отсюда и название: ближний порядок. Адекватное математическое описание структуры жидкости может быть дано лишь с помощью статистической физики. Например, если жидкость состоит из одинаковых сферических молекул, то ее структуру можно описать радиальной функцией распределения g(r), которая дает вероятность обнаружения какой-либо молекулы на расстоянии r от данной, выбранной в качестве точки отсчета. Экспериментально эту функцию можно найти, исследуя дифракцию рентгеновских лучей или нейтронов, а с появлением быстродействующих компьютеров ее стали вычислять методом компьютерного моделирования, основываясь на имеющихся данных о природе сил, действующих между молекулами, или на предположениях об этих силах, а также на законах механики Ньютона. Сравнивая радиальные функции распределения, полученные теоретически и экспериментально, можно проверить правильность предположений о природе межмолекулярных сил.
В органических веществах, молекулы которых имеют удлиненную форму, в том или ином интервале температур иногда обнаруживаются области жидкой фазы с дальним ориентационным порядком, который проявляется в тенденции к параллельному выстраиванию длинных осей молекул. При этом ориентационная упорядоченность может сопровождаться координационной упорядоченностью центров молекул. Жидкие фазы такого типа обычно называют жидкими кристаллами. Жидкокристаллическое состояние – промежуточное между кристаллическим и жидким. Жидкие кристаллы обладают одновременно текучестью и анизотропией (оптической, электрической, магнитной). Иногда это состояние называют мезоморфным (мезофазой) – из-за отсутствия дальнего порядка. Верхний предел существования – температура просветления (изотропная жидкость). Термотропные (мезогенные) ЖК существуют выше определенной температуры. Типичные – цианобифенилы. Лиотропные – при растворении, например, водные растворы мыл, полипептидов, липидов, ДНК. Изучение жидких кристаллов (мезофаза – плавление в две стадии – мутный расплав, потом прозрачный, переход из кристаллической фазы в жидкую через промежуточную форму с анизотропными оптическими свойствами) важно для целей технологии – жидкокристаллическая индикация.
Молекулы в газе движутся хаотично (беспорядочно). В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Молекулы в газе движутся с большими скоростями (сотни м/с). Сталкиваясь, они отскакивают друг от друга как абсолютно упругие шарики, изменяя величину и направление скоростей. При больших расстояниях между молекулами силы притяжения малы и не способны удержать молекулы газа друг возле друга. Поэтому газы могут неограниченно расширяться. Газы легко сжимаются, среднее расстояние между молекулами при этом уменьшается, но все равно остается большим их размеров. Газы не сохраняют ни формы, ни объема, их объем и форма совпадают с объемом и формой сосуда, который они заполняют. Многочисленные удары молекул о стенки сосуда создают давление газа.
Атомы и молекулы твердых тел колеблются около определенных положений равновесия. Поэтому твердые тела сохраняют и объем, и форму. Если мысленно соединить центры положений равновесия атомов или ионов твердого тела, то получится кристаллическая решетка.
Молекулы жидкости расположены почти вплотную друг к другу. Поэтому жидкости очень плохо сжимаются и сохраняют свой объем. Молекулы жидкости совершают колебания около положения равновесия. Время от времени молекула совершает переходы из одного оседлого состояния в другое, как правило, в направлении действия внешней силы. Время оседлого состояния молекулы мало и с ростом температуры уменьшается, а время перехода молекулы в новое оседлое состояние еще меньше. Поэтому жидкости текучи, не сохраняют своей формы и принимают форму сосуда, в который налиты.

Кинетическая теория жидкостей Разработанная Я. И. Френкелем кинетическая теория жидкости рассматривает жидкость как динамическую систему частиц, напоминающую отчасти кристаллическое состояние. При температурах, близких к температуре плавления, тепловое движение в жидкости сводится в основном к гармоническим колебаниям частиц около некоторых средних положений равновесия. В отличие от кристаллического состояния эти положения равновесия молекул в жидкости имеют для каждой молекулы временный характер. Поколебавшись около одного положения равновесия в течение некоторого времени t, молекула перескакивает в новое положение, расположенное по соседству. Такой перескок происходит с затратой энергии U, поэтому время “оседлой жизни“ t зависит от температуры следующим образом: t = t0 eU/RT, где t0 - период одного колебания около положения равновесия. Для воды при комнатной температуре t » 10-10с, t0 = 1.4 x 10-12с, т. е. одна молекула, совершив около 100 колебаний, перескакивает в новое положение, где продолжает совершать колебания. Из данных по рассеиванию рентгеновских лучей и нейтронов можно вычислить функцию плотности распределения частиц  в зависимости от расстояния r от одной частицы, выбранной за центр. При наличии дальнего порядка в кристаллическом твердом теле функция (r) имеет ряд четких максимумов и минимумов. В жидкости из-за высокой подвижности частиц сохраняется только ближний порядок. Это четко следует из рентгенограмм жидкостей: функция (r) для жидкости имеет четкий первый максимум, размытый второй и затем (r) = const. Плавление кинетическая теория описывает следующим образом. В кристаллической решетке твердого тела всегда существуют в небольшом количестве вакансии (дырки), медленно блуждающие по кристаллу. Чем ближе температура к температуре плавления, тем выше концентрация “дырок“, и тем быстрее они перемещаются по образцу. В точке плавления процесс образования “дырок“ приобретает лавинообразный кооперативный характер, система частиц становится динамичной, исчезает дальний порядок, появляется текучесть. Решающую роль в плавлении играет образование свободного объема в жидкости, который и делает систему текучей. Важнейшее отличие жидкости от твердого кристаллического тела заключается в том, что в жидкости существует свободный объем, значительная часть которого имеет вид флуктуаций (“дырок“), блуждание которых по жидкости и придает ей такое характерное для нее качество, как текучесть. Число таких “дырок“, их объем и подвижность зависят от температуры. При низкой температуре жидкость, если она не превратилась в кристаллическое тело, становится аморфным твердым телом с очень низкой текучестью из-за уменьшения объема и подвижности “дырок“. Наряду с кинетической теорией в последние десятилетия успешно развивается статистическая теория жидкости.

Структура льда и воды. Наиболее важной и распространенной жидкостью при нормальных условиях является вода. Эта самая распростарненная на Земле молекула! Она является прекрасным растворителем. Например, все биологические жидкости содержат воду. Вода растворяет как многие неорганические (соли, кислоты, основания) и органические вещества (спирты, сахара, карбоновые кислоты, амины). Какова структура этой жидкости? Нам опять придется вернуться к вопросу, который мы рассматривали в первой лекции, а именно, к такому специфическому межмолекулярному взаимодействию, как водородная связь. Вода, как в жидком, так и в кристаллическом виде проявляет аномальные свойства именно из-за наличия множества водородных связей. Какие это аномальные свойства: высокая температура кипения, высокая температура плавления и высокая энтальпия испарения. Посмотрим сначала на график, потом в таблицу, а затем на схему водородной связи между двумя молекулами воды. На самом деле, каждая молекула воды координирует вокруг себя 4 других молекулы воды: две за счет кислорода, как донора двух неподеленных электронных пар на два протонизированных водорода и и две за счет протонизированных водородов, координирующихся с кислородами других молекул воды. На предыдущей лекции я демонстрировал вам слайд с графиками зависимости температуры плавления, кипения и энтальпии испарения гидридов VI группы в зависимости от периода. Эти зависимости имеют явную аномалию для гидрида кислорода. Все эти параметры для воды заметно выше, чем предсказанные из практически линейной зависимости для следующих гидридов серы, селена и теллура. Мы объяснили это существованием водородной связи между протонизированным водородом и акцептором электронной плотности - кислордом. Наиболее успешно водородная связь исследуется с использованием колебательной инфракрасной спектроскопии. Свободная ОН-группа имеет характеристическую энергию колебаний, которая вызывает переменное удлинение и укорочение связи О-Н, давая характеристичную полосу в инфракрасном спектре поглощения молекулы. Однако, если ОН-группа участвует в водородной связи, атом водорода оказывается связанный атомами с обеих сторон и таким образом его колебание «демпфируется» и частота уменьшается. Из следующей таблицы видно, что увеличение силы и «концентрации» водородной связи приводит к уменьшению частоты поглощения. На приведенном рисунке кривая 1 соответствует максимуму инфракрасного спектра поглощения групп О-Н во льду (где все Н-связи завязаны); кривая 2 соответствует максимуму инфракрасного спектра поглощения групп О-Н отдельных молекул Н2О, растворенных в CCl4 (где Н-связей нет - раствор Н2О в CCl4 слишком разбавлен); а кривая 3 соответствует спектру поглощения жидкой воды. Если бы в жидкой воде было бы два сорта О-Н групп - образующие водородные связи и не образующие их - и одни О-Н группы в воде колебались бы так же (с той же частотой), как во льду (где они образуют Н-связи), а другие - как в окружении CCl4 (где они Н-связей не образуют). Тогда спектр воды имел бы два максимума, соответствующие двум состояниям О-Н групп, двум их характерным частотам колебаний: с какой частотой группа колеблется, с такой и поглощает свет. Но "двухмаксимумная" картина не наблюдается! Вместо нее на кривой 3 мы видим один, очень размытый максимум, простирающийся от максимума кривой 1 до максимума кривой 2. Это значит, что все О-Н группы в жидкой воде завязывают водородные связи - но все эти связи имеют иную энергию, «разболтаны» (имеют другую энергетику), причем по-разному. Это показывает, что картина, в которой часть водородных связей в воде разорвана, а часть сохранена, строго говоря, неверна. Однако она столь проста и удобна для описания термодинамических свойств воды, что ею широко пользуются - и мы тоже будем к ней обращаться. Но надо иметь в виду, что она не вполне точна.
Таким образом, ИК-спектроскопия является мощным методом исследования водородной связи и многие сведения о структуре ассоциированных за ее счет жидкостей и твердых тел добыты с помощью этого спектрального метода. В итоге, для жидкой воды льдоподобная модель (модель О.Я. Самойлова) является одной из наиболее общепризнанных. Согласно этой модели жидкая вода имеет нарушенный тепловым движением (свидетельство и следствие теплового движения - броуновское движение, которое впервые наблюдал английский ботаник Роберт Броун в 1827 г. на пыльце под микроскопом) льдоподобный тетраэдрический каркас (каждая молекула воды в кристалле льда связана водородными связями с пониженной энергетикой по сравнению с таковой во льду -«разболтанные» водородные связи) с четырьмя окружающими ее молекулами воды), пустоты этого каркаса частично заполнены молекулами воды, причем молекулы воды, находящиеся в пустотах и в узлах льдоподобного каракаса, энергетически неравноценны.

В отличие от воды, в кристалле льда в узлах кристаллической решетки находятся молекулы воды равноценные по энергии и они могут совершать исключительно колебательные движения. В таком кристалле существует как ближний, так и дальний порядок. В жидкой воде (как для полярной жидкости) некоторые элементы кристаллической структуры сохраняются (причем, даже в газовой фазе молекулы жидкости упорядочивается в небольшие малоустойчивые кластеры), но отсутствует дальний порядок. Таким образом, структура жидкости отличается от структуры газа наличием ближнего порядка, но отличается от структуры кристалла отсутствием дальнего порядка. Наиболее убедительно об этом свидетельствует исследование рассеивания ренгенновских лучей. Три соседа каждой молекулы в жидкой воде расположены в одном слое и находятся на большем от нее расстоянии (0,294 нм), чем четвертая молекула из соседнего слоя (0,276 нм). Каждая молекула воды в составе льдоподобного каркаса образует одну зеркальносимметричную (прочную) и три центральносимметричных (менее прочных) связи. Первая относится к связи между молекулами воды данного слоя и соседних слоев, остальные - к связям между молекулами воды одного слоя. Поэтому четвертая часть всех связей-зеркальносимметричные, а три четверти центральносимметричные. Представления о тетраэдрическом окружении молекул воды привели к выводу о высокой ажурности ее строения и наличии в ней пустот, размеры которых равны или превышают размеры молекул воды.

Элементы структуры жидкой воды. а - элементарный водный тетраэдр (светлые кружки - атомы кислорода, черные половинки - возможные положения протонов на водородной связи); б - зеркальносимметричное расположение тетраэдров; в - центральносимметричное расположение; г - расположение кислородных центров в структуре обычного льда. Вода характеризуется значительными силами межмолекулярного взаимодействия за счет водородных связей, которые образуют пространственную сетку. Как мы говорили на предыдущей лекции, водородная связь обусловлена способностью атома водорода, соединенного с электроотрицательным элементом, образовывать дополнительную связь с электроотрицательным атомом другой молекулы. Водородная связь относительно прочна и составляет несколько 20-30 килоджоулей на моль. По прочности она занимает промежуточное место между энергией Ван-дер-Ваальса и энергией типично ионной связи. В молекуле воды энергия химической связи H-O составляет 456 кДж/моль, а энергия водородной связи H…O 21 кДж/моль.

Соединения водорода
Молекулярный вес Температура,  С
замерзания Кипения
H2Te 130 -51 -4
H2Se 81 -64 -42
H2S 34 -82 -61
H2O 18 0! +100!

Структура льда. Нормальный лед. Пунктир - Н-связи. В ажурной структуре льда видны небольшие полости, окруженные молекулами Н2О.
Таким образом, структура льда - ажурная постройка из молекул воды, связанных между собой лишь водородными связями. Расположение молекул воды в структуре льда обуславливает наличие в структуре широких каналов. В процессе плавления льда молекулы воды "проваливаются" в эти каналы, что объясняет повышение плотности воды по сравнению с плотностью льда. Кристаллы льда встречаются в виде правильных шестиугольных пластинок, таблитчатых выделений и сложных по форме сростков. Структура нормального льда диктуется водородными Н-связями: она хороша для геометрии этих связей (О-Н смотрит прямо на О), но не очень хороша для плотного Вандерваальсового контакта молекул Н2О. Поэтому структура льда ажурна, в нем молекулы Н2О обволакивают микроскопические (размером меньше молекулы Н2О) поры. Ажурность структуры льда приводит к двум хорошо известным эффектам: (1) лед менее плотен, чем вода, он плавает в ней; и (2) под сильным давлением - например, лезвия конька лед подплавляется. Большинство из существующих во льду водородных связей сохраняется и в жидкой воде. Это следует из малости теплоты плавления льда (80 кал/г) по сравнению с теплотой кипения воды (600 кал/г при 0оС). Можно было бы сказать, что в жидкой воде рвется только 80/(600+80) = 12% из существующих во льду Н-связей. Однако эта картина - что часть водородных связей в воде разорвана, а часть сохранена - не совсем точна: скорее, все водородные связи в воде разбалтываются. Это хорошо иллюстрируется следующими экспериментальными данными.

Структура растворов. От конкретного примеров для воды перейдем к другим жидкостям. Разные жидкости отличаются друг от друга размерами молекул и характером межмолекулярных взаимодействий. Таким образом, в каждой конкретной жидкости существует определенная псевдокристаллическая структура, характеризующаяся ближним порядком и, в какой-то степени, напоминающая структуру, получающуюся при замерзании жидкости и превращения ее в твердое тело. При растворении другого вещества, т.е. при образовании раствора, характер межмолекулярных взаимодействий изменяется и появляется новая структура с иным расположением частиц, чем в чистом растворителе. Эта структура зависит от состава раствора и является специфичной для каждого конкретного раствора. Образование жидких растворов обычно сопровождается процессом сольватации, т.е. выстраивание молекул растворителя вокруг молекул растворенного вещества вследствие действия межмолекулярных сил. Различают ближнюю и дальнюю сольватацию, т.е. вокруг молекул (частиц) растворенного вещества образуется первичная и вторичная сольватные оболочки. В первичной сольватной оболочке в непосредственной близости находятся молекулы растворителя, которые движутся вместе с молекулами растворенного вещества. Число молекул растворителя находящихся в первичной сольватной оболочке называется координационным числом сольватации, которое зависит и от природы растворителя и от природы растворенного вещества. В состав вторичной сольватационной оболочки входят молекулы растворителя, которые находятся на значительно больших расстояниях и влияют на протекающие в растворе процессы за счет взаимодействия с первичной сольватной оболочкой.
При рассмотрении стабильности сольватов различают кинетическую и термодинамическую устойчивость.
В водных растворах количественными характеристиками кинетической гидратации (О.Я. Самойлов) служат величины i/ и Ei=Ei-E, где iи  - среднее время пребывания молекул воды в положении равновесия вблизи i-го иона и в чистой воде, а Ei и E – энергия активации обмена и энергия активации процесса самодиффузии в воде. Эти величины связаны между собой приближенным соотношенеим:
i/  exp(Ei/RT) При этом,
если EI  0, i/  1 (обмен ближайших к иону молекул воды происходит реже (медленее), чем обмен между молекулами в чистой воде) – положительная гидратация
если EI  0, i/  1 (обмен ближайших к иону молекул воды происходит чаще (быстрее), чем обмен между молекулами в чистой воде) – отрицательная гидратация

Так, для иона лития EI = 1.7 кдж/моль, а для иона цезия Ei= - 1.4 кдж/моль, т.е. маленький «жесткий» ион лития удерживает молекулы воды сильней, чем имеющий тот же заряд, но большой и «диффузный» ион цезия. Термодинамическая устойчивость образующихся сольватов определяется изменением энергии Гиббса при сольватации (solvG) = (solvH) - T(solvS). Чем эта величина более отрицательна, тем более устойчив сольват. В основном, это определяется отрицательными значениями энтальпии сольватации.
Понятие о растворах и теориях растворов. Истиные растворы получаются самопроизвольно при соприкосновении двух или более веществ, вследствие разрушения связей между частицами одного типа и образования связей другого типа и распределение вещества по всему объему вследствие диффузии. Растворы по свойствам разделяются на идеальные и реальные, растворы электролитов и неэлектролитов, разбавленные и концентрированные, ненасыщенные, насыщенные и пересыщенные. Свойства расторов зависят от природы и величины ММВ. Эти взаимодействия могут иметь физическую природы (силы Ван-дер-Ваальса) и сложную физико-химическую природу (водородная связь, ион-молекулярная, комплексы с переносом заряда и т.д.). Процесс образования раствора характеризуется одновременным проявлением между взаимодействующими частицами сил притяжения и отталкивания. При отсутствии сил отталкивания частицы бы сливались (слипались) и жидкости могли бы быть неограничено сжаты, при отсутствии сил притяжения нельзя было бы получить жидкости или твердые тела. В предыдущей лекции мы рассматривали физическую и химическую теории растворов.
Однако, создание единой теории растворов наталкивается на значительные трудности и в настоящее время она все еще не создана, хотя проводятся исследования самыми современными методами квантовой механики, статистической термодинамики и физики, кристаллохимии, рентгеноструктурного анализа, оптическими методами, методами ЯМР. Реактивное поле. В продолжении расмотрения сил межмолекулярного взаимодействия, рассмотрим концепцию «реактивного поля», которая важна для понимания структуры и строения конденсированных сред и реальных газов, в частности, жидкого состояния, а значит и всей физической химии жидких растворов.
Реактивное поле возникает в смесях полярных и неполярных молекул, например, для смесей углеводородов и нафтеновых кислот. Полярные молекулы воздействуют полем определенной симметрии (симметрия поля определяется симметрией вакантных молекулярных орбиталей) и напряженности Н на неполярные молекулы. Последние поляризуются из-за разделения зарядов, что приводит к появлению (наведению) диполя. Молекула с индуцированным диполем в свою очередь воздействует на полярную молекулу, изменяя ее электромагнитное поле, т.е. возбуждает реактивное (ответное) поле. Возникновение реактивного поля приводит к повышению энергии взаимодействия частиц, что выражается в создании прочных сольватных оболочек у полярных молекул в смеси полярных и неполярных молекул.
Энергию реактивного поля расчитывают по следующей формуле: где:
знак «-» - определяет притяжение молекул
S – статическая электрическая проницаемость
беск. – диэлектрическая проницаемость, обусловленная электронной и атомной поляризуемостью молекул
NA - число Авогадро
VM – объем, занимаемый 1 молем полярного вещества в изотропной жидкости v = дипольный момент
ER - энергия 1 моля полярного вещества в растворе
Концепция «реактивного поля» позволит нам лучше понять структуру чистых жидкостей и растворов. Квантово-химический подход к исследованию реактивного поля развит работах М. В. Базилевского и его сотрудников в Научно-исследовательском физико-химическом институте им. Л. Я. Карпова Таким образом, проблема жидкого состояния ждет своих молодых исследователей. Вам и карты в руки.

В современной молекулярно-кинетической теории материи различные агрегатные состояния вещества связывают с различной степенью упорядоченности в расположении его частиц. Для газообразного состояния характерно полностью беспорядочное, хаотичное расположение молекул. В противоположность этому в идеальном кристалле частицы расположены в строгом порядке, распространяющемся на весь кристалл. Правильное расположение частиц в кристаллических твердых телах подтверждается экспериментально опытами по рассеянию рентгеновских лучей кристаллами.

Этими опытами удалось, например, установить, что атомы в ряде кристаллов образуют так называемую центрированную кубическую кристаллическую решетку (рис. 58, а). Атомы, находящиеся в узлах такой кристаллической решетки, расположены на вполне определенных расстояниях от произвольно выбранного атома (О - на рис. 58). Рассматриваемая кристаллическая решетка характеризуется тем, что на расстоянии от выбранного атома находятся 8 атомов, на расстоянии атомов и т. д.

Указанное пространственное распределение атомов в решетке можно изобразить графически, отложив на оси абсцисс расстояния а на оси ординат - величину равную числу атомов находящихся на одном квадратном сантиметре сферической поверхности с радиусом описанной вокруг атома О, выбранного за начало отсчета.

График, построенный по этому принципу, показан на рисунке 58, б.

Рис. 58 Строение кристаллической решетки и зависимость числа соседних атомов в решетке от расстояния, выраженного в ангстремах.

Рентгенографический метод позволяет на основании результатов опытов рассчитывать и строить аналогичные графики для всех исследуемых веществ.

Применение этого метода к изучению строения простейших (атомных) жидкостей при температурах, близких к температуре их кристаллизации, привело к установлению факта, чрезвычайно важного для теории жидкого состояния. Оказалось, что при этих условиях в жидкости в значительной степени сохраняется упорядоченность в расположении частиц, характерная для кристалла. Рентгенограммы атомных жидкостей напоминают рентгенограммы, полученные для порошкообразных кристаллических тел. Подобными же опытами было обнаружено, что с повышением температуры эта упорядоченность уменьшается, расположение частиц жидкости приближается к расположению, свойственному частицам газов. Для объяснения результатов этих опытов было предложено несколько теорий. По одной из них жидкость состоит из субмикроскопических кристалликов, разделенных тонкими пленками вещества в аморфном состоянии, характеризуемом беспорядочным расположением частиц. Субмикроскопические кристаллики назвали сиботаксическими областями. В отличие от реальных кристалликов сиботаксические области очерчены не резко, они

плавно переходят в области неупорядоченного расположения, частиц. Кроме того, сиботаксические области непостоянны, они непрерывно разрушаются и возникают вновь. Наличие областей упорядоченного расположения частиц приводит к тому, что у большинства молекул жидкости соседние с ними частицы располагаются в определенном, характерном для данной жидкости порядке. Однако благодаря хаотической ориентации отдельных сиботаксических групп в отношении друг друга упорядоченное расположение молекул распространяется только на ближайших к данной молекуле соседей.

Рис. 59. Сравнение строения идеального кристалла и жидкости.

На расстоянии трех-четырех молекулярных диаметров упорядоченность уменьшается столь сильно, что теряет смысл говорить о правильном порядке в расположении частиц вещества.

В настоящее время считается общепризнанным, что жидкости свойственна упорядоченность ближнего порядка в расположении ее частиц в отличие от кристаллов, которые характеризуются упорядоченностью дальнего порядка.

Различие в строении кристаллического тела и жидкости схематично показано на рисунке 59. Слева на рисунке изображено строение идеального гипотетического кристалла. Его структурные частицы в любом месте кристалла занимают строго определенное положение относительно друг друга. Однако в жидкостях (на рисунке - справа), в окрестности произвольно выбранной молекулы О, соседние молекулы могут иметь расположение, как весьма близкое к кристаллическому (направление так и отличное от него (направление Во всяком случае, в жидкости наблюдается почти «кристаллическое» расположение соседних молекул («ближний порядок») и нарушение строгого порядка в расположении дальних молекул (отсутствие «дальнего порядка»).

Следует также обратить внимание на то, что на рассматриваемом рисунке число частиц, расположенных упорядоченно (рис. 59, а)

одинаково с числом частиц, которые расположены неупорядоченно (рис. 59, б). Сравнение соответствующих площадей убеждает в том, что при характерном для жидкости неупорядоченном расположении частиц она занимает больший объем, чем при упорядоченном, кристаллическом.

Результаты рентгеноструктурного исследования жидкостей можно объяснить также, исходя из представления о квазикристаллической структуре жидкости. Для того чтобы пояснить это, обратимся к расположению атомов в идеальном кристалле. Если мысленно выбрать какой-либо атом в таком кристалле и постараться определить, какова вероятность встретить соседний атом на расстоянии от первого, то при отсутствии теплового движения искомая вероятность равнялась бы нулю на расстояниях, меньших расстояния при котором она делалась бы равной единице. Это означает, что в данном направлении соседний атом всегда встречался бы на одном и том же расстоянии от исходного.

На расстояниях, больших но меньших искомая вероятность вновь равнялась бы нулю, а на расстоянии единице. Такое положение повторялось бы на всем протяжении кристалла: вероятность встретить атом равнялась бы единице для всех расстояний, кратных

Тепловое колебательное движение атомов в кристалле приводит к тому, что вероятность встретить соседний атом будет не равна нулю также и на расстояниях, незначительно отличающихся от В одном случае соседний атом, совершая колебания, слегка приблизится к тому, от которого ведется отсчет, а в другом случае - удалится. Графически изменение вероятности встретить атом в зависимости от расстояния между ним и атомом, выбранным за начало отсчета, изображается характерной кривой (верхняя часть рисунка 60).

Отличительной чертой графика является постоянство ширины отдельных колоколообразных участков кривой. Именно это постоянство указывает на сохранение упорядоченности на всем протяжении кристалла.

В жидкости наблюдается иная картина (рис. 60, внизу). Качественно вероятность встретить атом на каком-либо расстоянии от исходного атома изменяется подобно тому, как это имеет место в кристалле. Однако в этом случае только первый колоколообразный участок кривой выражен в виде четкого максимума. Последующие колоколообразные участки, расширяясь, взаимно перекрываются, так что максимумы на кривой сравнительно быстро исчезают.

Таким образом, расположение близких друг к другу частиц в жидкости напоминает расположение частиц в кристаллическом

твердом теле. По мере удаления от исходного атома, относительно которого производят расчет, положение частиц становится все более разупорядоченным. Вероятность встретить частицу на любом расстоянии становится примерно одинаковой, как это имеет место в газах.

Конечно, увеличение неопределенности в местоположении атомов объясняется не увеличением амплитуды их тепловых колебаний, а случайными нарушениями в расположении частиц жидкости.

Следует подчеркнуть, что у жидкостей даже первый максимум на кривой вероятности (рис. 60) не полностью разрешен, т. е. кривая не касается справа от максимума оси абсцисс.

Рис. 60. Вероятное распределение атомов в идеальном кристалле и в жидкости

Физически это означает, что в жидкости число частиц, ближайших к данной, не является, как в кристалле, строго постоянным.

В жидкости правильнее говорить лишь о постоянстве среднего числа ближайших соседей.

Результаты рентгеноструктурного исследования жидкости, которыми мы в настоящее время располагаем, могут быть объяснены как на основании представления о сиботаксических группах, так и на основании представления о квазикристаллической структуре жидкости. Следует отметить, что различие между микрокристаллической и квазикристаллической теориями жидкости невелико. Если исследовать среднее расположение частиц жидкости за более или менее длительный промежуток времени, то обе теории будут приводить к одним и тем же результатам.

Обе теории обладают тем недостатком, что, описывая качественно правильно особенности строения жидкости, они не дают возможности количественно характеризовать ее свойства

Разновидностью «кристаллических» теорий жидкого состояния является так называемая «дырочная» теория

жидкости. Согласно этой теории жидкость уподобляется кристаллу, в котором большое количество атомов оказывается смещенным из присущих им равновесных положений. При смещении атома из равновесного положения остается как бы свободное место, которое и называется «дыркой».

Согласно теории «дырки» в жидкости - это более или менее расширенные промежутки между молекулами, возникающие спонтанно, расширяющиеся, а затем сжимающиеся и вновь исчезающие.

Уравнение состояния в «дырочной» теории жидкости имеет, согласно Я. И. Френкелю, следующий вид:

Здесь V - молярный объем жидкости при температуре минимальный объем, который может занимать жидкость; энергия образования дырки; постоянная Больцмана; число Авогадро; минимальный объем дырки.

Как уже неоднократно подчеркивалось, по мере увеличения температуры сходство жидкостей с твердыми телами уменьшается и возрастает сходство их с соответствующими газами. Поэтому не удивительно, что при объяснении свойств жидкостей наряду с рассмотренными выше «кристаллическими» моделями жидкости широкое распространение приобрели теории, в которых жидкость уподобляется сильно сжатому газу. В этих теориях большую роль играет представление о свободном объеме жидкости, определить который точно затруднительно. Существующие в настоящее время методы вычисления свободного объема жидкости являются грубо приближенными и приводят, как правило, к величинам, расходящимся между собой.

Из теорий свободного объема наиболее разработана так называемая «ячеечная» теория жидкости.

Благодаря тому что молекулы жидкости расположены близко друг к другу, каждую из них можно рассматривать как заключенную в ячейку, стенки которой образуют ее ближайшие соседи. Молекулы могут меняться местами, так что молекула, находящаяся в центре мысленно выделенной ячейки, может спустя некоторое время перейти в соседнюю ячейку. Однако подобные миграции частиц происходят сравнительно редко, и большую часть времени молекула проводит внутри данной ячейки.

Движение молекулы в ячейке происходит в силовом поле, образованном ее ближайшими соседями, число которых для простых жидкостей полагают равным 12.

Поскольку данная теория применима к жидкостям, находящимся при высоких температурах, когда влияние структуры вещества практически не сказывается, можно считать силовое поле, в котором происходит движение частицы, сферически симметричным.

Принимая далее определенную форму зависимости потенциальной энергии молекулярного взаимодействия от расстояния между частицами и делая ряд упрощающих предположений, можно найти выражение для потенциальной энергии частицы, находящейся в элементарной ячейке. Обычно этому выражению придают следующий вид:

где V - объем сферической ячейки, приходящейся на одну частицу, а постоянные.

Уравнение состояния жидкости в этом случае можно будет записать в следующей форме:

Здесь давление, постоянная Больцмана и температура. Подставляя в последнее выражение значение удается выразить количественно многие физико-химические характеристики индивидуальных жидкостей. Так, например, пользуясь ячеечной теорией жидкости, можно вычислить критические параметры различных простых веществ. Рассчитанные значения критической температуры в случае простейших газов оказались равными по абсолютной шкале для водорода 41°, неона 47°, азота 128° и аргона 160°, экспериментальные же значения соответственно равны 33°, 44°, 126° и 150° К. В приведенном примере согласие величин, рассчитанных теоретически, с величинами, найденными на опыте, вполне удовлетворительное.

Необходимо, однако, отметить, что написанное выше выражение для давления, строго говоря, справедливо для реального газа, а не для жидкости, и потому ожидать очень хорошего согласия теории с опытом нет оснований. Несмотря на это замечание, теория свободного объема имеет свои достоинства, среди которых следует отметить простоту использованных физических моделей и возможность количественного сравнения теории с опытом.

Ячеечная теория дает возможность относительно просто объяснить свойства жидкостей и рассчитать в первом приближении некоторые их характеристики.

Теоретически более строгой является статистическая теория жидкости. В этой теории основную роль играют две физические величины. Первая из этих величин называется раднальной функцией распределения, вторая - меж молекулярным потенциалом. Радиальная

функция распределения определяет вероятность встретить произвольно выбранную пару частиц в жидкости на некотором заданном расстоянии, заключенном в пределах от до Межмолекулярный потенциал определяет взаимодействие молекул жидкости. Знание этих двух величин позволяет написать теоретически строго уравнения состояния и энергии жидкости и выразить количественно ее различные физико-химические характеристики.

Радиальную функцию распределения для ряда жидкостей можно определить экспериментально на основании данных рентгено-структурного анализа. Однако значительные трудности в определении и расчете межмолекулярного потенциала для конкретных жидкостей заставляют решать полученные уравнения приближенно.

Указанное обстоятельство затрудняет количественное сопоставление статистической теории жидкости с опытом. Нельзя, однако, забывать, что эта теория качественно правильно предсказывает многие свойства жидкостей и присущие им закономерности.

Именно в возможности правильно предвидеть различные свойства вещества заключается одно из преимуществ статистической теории жидкого состояния.

В будущем, когда будет найдено теоретически строгое выражение для межмолекулярного потенциала и преодолены вычислительные затруднения, статистическая теория позволит лучше понять особенности жидкого состояния вещества.


Top